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Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France

(Received 21 December 2020; revised 13 July 2021; accepted 28 September 2021; published 5 November 2021)

Following a Gallavotti’s conjecture, stationary states of Navier-Stokes fluids are proposed to be
described equivalently by alternative equations besides the Navier-Stokes equation itself. We discuss a
model system symmetric under time reversal based on the Navier-Stokes equations constrained to keep the
enstrophy constant. It is demonstrated through highly resolved numerical experiments that the reversible
model evolves to a stationary state which reproduces quite accurately all statistical observables relevant for
the physics of turbulence extracted by direct numerical simulations (DNS) at different Reynolds numbers.
The possibility of using reversible models to mimic turbulence dynamics is of practical importance for the
coarse-grained version of Navier-Stokes equations, as used in large-eddy simulations. Furthermore, the
reversible model appears mathematically simpler, since enstrophy is bounded to be constant for every
Reynolds number. Finally, the theoretical interest in the context of statistical mechanics is briefly discussed.
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Nonequilibrium macroscopic systems are generally
described in the framework of irreversible hydrodynamics
[1–5]. In some cases, the hydrodynamic level is obtained
from the microscopic molecular through coarse graining
[6,7], and the laws that emerge through coarse graining
break the fundamental time-reversal symmetry inherent to
the microscopic laws [1,8–11]. The foremost physical
example of irreversible processes is given by an incom-
pressible fluid which is described by the Navier-Stokes
equations [12–14]. In this framework, the molecular effects
are represented by the viscosity ν that is also responsible for
the dissipation of energy, and may lead to a stationary state
when energy is injected. In the limit of vanishing viscosity,
the fluid becomes turbulent [12,15] and displays the out-
standing feature of “anomaly dissipation,” which means
that the mean rate of kinetic energy dissipation hϵi remains
finite and independent of ν. Thus, the trace of irreversibility
is kept through this singular limit [16,17]. The rigorous
explanation of such a feature remains an open issue, and is
at the basis of the mathematical problem of the existence
and smoothness of the Navier-Stokes solution in three
dimensions [18–20]. Furthermore, nontrivial features of
irreversibility have been found in Lagrangian statistics [21],
and such extreme events have been shown to be possibly
related to singularities in Navier-Stokes equations [22,23].
One problem of such an approach is the asymptotic nature
of turbulence, which makes it difficult to disentangle in
actual experiments Reynolds number effects from genuine
features [24,25]. An alternative approach was proposed
by Gallavotti through the conjecture that the same system
can be described by different yet equivalent models,
notably for fluids [26]. In particular, phenomenological
irreversible macroscopic systems could be described by
suitable reversible dissipative models, at least in some

respect. This idea was rooted in several developments in
statistical physics, and notably in the use of thermostats in
molecular dynamics simulations [27,28].
The possibility to use a time-reversible model to

obtain turbulent features was pioneered in Ref. [29],
and then conjectured in a more formal way by Gallavotti
[30,31]. This conjecture has been called equivalence of
dynamical ensemble, to clearly point out the analogy with
ensembles in equilibrium statistical mechanics [32]. In
this framework, in the thermodynamic limit, N → ∞ with
ρ ¼ N=V ¼ const, any local observable (i.e., related to a
finite region of the phase space) is equal in all canonical
ensembles. Following this picture, it has been proposed to
replace the constant viscosity with a fluctuating one that
would make it possible to have a new global invariant for
the system. The thermodynamic limit is obtained in the
case 1=ν → ∞. Since in this fully turbulent limit the
system is highly chaotic and exhibits a random behavior,
it is plausible to conjecture that it may be described
by an invariant distribution, as already postulated by
Kolmogorov [33–35].
The conjecture has been directly tested in small 2D

systems [31,36,37], for the Lorenz model [38], in shell
models [39,40]. Recently, a model obtained by imposing
the constraint that turbulent kinetic energy is conserved has
been analyzed in 3D turbulence with a small number of
modes [41]. Parallel attempts have been made to test the
consequences, namely the fluctuation relations in different
systems [42–45]. Yet, a clear demonstration of the validity
of Gallavotti’s conjecture is still lacking.
The purpose of the present work is precisely to show to

which extent the Gallavotti conjecture is accurate,
using high-resolution numerical experiments at different
Reynolds numbers. Different equivalent models may in
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principle be proposed [31], yet considering the physics of
turbulence the reversible model should be related to the
dissipation anomaly, where the average rate of dissipation
is defined as hϵi≡ hνjΔuj2i ¼ 2νΩ, whereΩ ¼ hω2i is the
enstrophy, expressed in terms of the vorticity ω ¼ ∇ × u
[12]. In analogy with statistical mechanics [46], we con-
sider the irreversible distribution as the canonical ensemble
with ν corresponding to β ¼ ðkBTÞ−1, and the analogous of
the microcanonical ensemble taking the enstrophy Ω as
fixed, and letting ν fluctuate.
Giving evidence of the equivalence of reversible and

irreversible Navier-Stokes (NS) equations, this work makes
a first link between turbulent fluids and the general
framework for nonequilibrium problems in statistical
mechanics [47–49], formally based on the chaotic hypoth-
esis [32,50–52]. The main difficulty is that the general
theory applies only to time-reversible dynamical systems,
whereas NS does not. However, our results show that many
nonequilibrium systems, and most notably turbulent fluids,
could be considered in practice as reversible as far as
statistical observables are considered, and therefore the
Gallavotti-Cohen theory could be applied to the correct
observables. Moreover, a multiscale approach is crucial to
tackle complex systems with decimated models [53], like in
climate and meteorological sciences. In this case, only large
scales can be simulated and small scales are modeled often
in an irreversible dissipative way [54,55]. The present study
aims to give some insight on a new possible way to propose
reversible models, since it is known that such models may
better describe the cascade process [56]. Finally, the
conjecture is related to the issue of a rigorous proof
of existence of unique solutions of the Navier-Stokes
equations [20,57,58]. Indeed, the reversible model pro-
posed should admit a smooth solution, since the vorticity
remains bounded for any value of the viscosity. While
the original mathematical problem would remain open, the
conjecture should provide an answer at least from the
statistical point of view, since the same statistical results
can be obtained with a well-posed set of equations.
We consider here an incompressible fluid, with constant

density ρ ¼ 1, subjected to viscosity and an external
forcing term. The motion is described by the NS equation:

∂tuþ ðu · ∇Þu ¼ −∇pþ ν∇2uþ f ; ∇ · u ¼ 0; ð1Þ
where ν is the cinematic viscosity, p the pressure, and f a
forcing term which acts at large scales. Clearly, the
dissipative term breaks up the symmetry for temporal
inversion; i.e., the equation is not invariant under the
transformation: T ∶t → −t; u → −u. The corresponding
reversible model is obtained replacing the viscosity coef-
ficient ν with a time-dependent term which makes the
equation invariant under the symmetry T . Imposing the
conservation of enstrophy Ω≡ R

V j∇ × uj2dx, Eq. (1) be-
comes the reversible Navier-Stokes (RNS) ∂tuþðu ·∇Þu¼
−∇pþα½u�∇2uþ f with the fluctuating viscosity de-
fined as

α½u� ¼
R
V ½g · ωþ ω · ðω ·∇Þu�dxR

Vð∇ × ωÞ2dx ; ð2Þ

where the integrals are defined over the whole volume
of the fluid V; the vorticity ω ¼ ∇ × u and g ¼ ∇ × f
are used.
While the stationary states of NS define a nonequili-

brium ensemble Eν, RNS equation will generate stationary
states that form a collection of new reversible viscosity
ensemble EΩ. Denoting hiν, hiΩ the averages over the two
corresponding distributions, the content of the Gallavotti’s
conjecture of equivalence is the following: for small
enough ν, it can be expected that the system is highly
chaotic and αðxÞ fluctuates wildly leading to a multiscale or
homogenization phenomenon [6,59]; that is, a large class
of observables have the same statistics in the two ensem-
bles, provided that hαiΩ ¼ ν or equivalently hΩiν ¼ Ω.
More details about the theory are given in Supplemental
Material [60].
We perform numerical simulations of the 3D NS and the

3D RNS equations by using the code BASILISK [73]. The
velocity field u is solved inside a cubic domain of side 2π,
and is prescribed to be triply periodic. The NS runs are
initiated from the Taylor-Green velocity field [74], then
RNS runs are initiated from the final velocity field of the
corresponding NS run. In both cases, we inject energy in
the system by using the Taylor-Green forcing [75]. The
results are independent from the choice of the initial and
forcing conditions, provided forcing is at large scales, and it
has been verified that numerical dissipation is negligible.
Furthermore, we have verified that the RNS generates the
same dynamics even if initialized with the Taylor-Green
velocity and not a steady NS field. As usual in isotropic
turbulence, we characterize the flow by using the dimen-
sionless Reynolds number based on the Taylor length [12]
Rλ ¼ urmsλ=ν; in the reversible model Rλ ¼ urmsλ=hαi,
where hαi is the mean value of the fluctuating viscosity.
We have performed three NS simulations at Rλ ¼ 30, 100,
300, using the same initial conditions for the velocity field
but varying the viscosity coefficient. All simulations are
carried out so that the smallest scale η is very well resolved
(Δx=η≲ 1 in all cases), and the corresponding number of
points used are N ¼ 256, 512, 1024. More numerical
details are given in Supplemental Material [60].
In Fig. 1 the phenomenology of both models is illustrated

by displaying the dynamics of the dissipation rate and of
the enstrophy at different Reynolds numbers. It is seen from
Fig. 1(a) that the reversible model at high Reynolds
numbers shows wild fluctuations in ε ¼ 2αΩ because of
the behavior of the fluctuating viscosity α. At more
moderate Reynolds numbers the behavior is practically
indistinguishable between NS and RNS. It is worth noting
some sporadic negative events in dissipation at high
Reynolds numbers, meaning that there is sometimes
injection of energy by viscosity. The first prediction of
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the conjecture is the reciprocity property which states that if
enstrophy is taken fixed ΩRNS ¼ hΩiNS, then ν ¼ hαi. This
is a prerequisite for the conjecture of equivalence. In
Fig. 1(b) it is shown that this is true within the numerical
errors (about 1%) at all Reynolds numbers. From a more
qualitative point of view, Fig. 1(c) shows that also the
geometrical features of the turbulent flow are practically
indistinguishable in the reversible and irreversible dynam-
ics. The stringent test of the conjecture is about the
equivalence of statistical properties of local observables
(where locality is intended in momentum space). Since
dissipation takes place at small scales, the observables are
local if they reside at large scale only. We compare in
Fig. 2(a) the second and fourth statistical moment of the
velocity field. We have computed them both from the whole
field, that is containing all the wave modes, and from the
large scales only. While the instantaneous value wildly
oscillates, the mean values converge rapidly to the irre-
versible value. Key for the dynamic of turbulence are the
two-point statistical observables [12,15,76]. We show both
velocity time correlation and one-dimensional energy
spectrum in Fig. 2(b). An excellent agreement between
irreversible and reversible models is found at all scales. The
analysis of the one-point probability density function
(PDF) is consistent with these results (see Supplemental
Material [60]).
Even more important is the scale-by-scale flux of energy,

which describes the cascade of energy [77]. We compute
the scale-by-scale flux from the coarse graining of the
Navier-Stokes equation (1) as [16,78]

ΠlðxÞ≡−
�∂ūi
∂xj

�
τij; with ðτlÞi;j¼ðuiujÞl−ðūlÞiðūlÞj;

ð3Þ

where the dynamic velocity field u is spatially (low-pass)
filtered over a scale l to obtained a filtered value:
ũlðxÞ ¼

R
d3rGlðrÞuðxþ rÞ, where Gl is a smooth

filtering function, spatially localized, and such that
Glðr⃗Þ ¼ l−3Gðr⃗=lÞ and G satisfies

R
dr⃗Gðr⃗Þ ¼ 1, andR

dr⃗jr⃗j2Gðr⃗Þ ¼ Oð1Þ. The results of the flux for the
different numerical experiments are displayed in
Fig. 3(a) up to scale l ¼ 2π=256. The global behavior is
the same as obtained in analogous pseudo-spectral simu-
lations [79,80], but what is important is that the fluxes of
the reversible and irreversible model are the same at all
scales, and at all Rλ. A small discrepancy is present at Rλ ¼
300 in the inertial range, which is probably due to different
statistical convergence. These results show unambiguously
that the mechanics of turbulence is the same with both the
irreversible and reversible model. To complete the analysis,
we have considered the higher-order structure functions
SpðrÞ ¼ hjuðxþ rÞ − uðxÞjpi and their scaling exponents
SpðrÞ ∼ rζp , which are the relevant observables for inter-
mittency [12,81–83]. Although these kinds of observables
are not included in the conjecture, the agreement displayed
in Fig. 3(b) is striking. Interestingly, our direct numerical
simulations results are in remarkable agreement with those
obtained with shell models [84].
Finally, we analyze the statistics of the time-fluctuating

viscosity α, shown in Fig. 4. With respect to the equivalence
conjecture, the sole crucial feature is that hαi ¼ ν, as shown
in Fig. 1. The statistics of α are interesting per se in
connection with the symmetry of fluctuations given by the
fluctuation relations for time-reversible dynamical systems
[30,49]. Indeed, α is related to the entropy production in the
time-reversible model [31]. We plot the PDF of α computed
using Eq. (2) during the reversible dynamics as well as that
computed in the irreversible one at different Reynolds
numbers. In the reversible dynamics, α fluctuates around
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FIG. 1. Time dynamics of some observables in the irreversible NS and then switched in the reversible model. (a) Comparison between
the time evolution of dissipation rate ϵ in the irreversible NS and the reversible RNS model for different Reynolds numbers. Time is
normalized with the large-scale (integral) characteristic timescale. The case at Rλ ¼ 100 is very similar to the Rλ ¼ 30 one and is not
shown for the sake of clarity. (b) Time dynamics of enstrophy Ω normalized by its average value at the highest Rλ. In the reversible
model the enstrophy is kept constant. In the inset, hαi normalized by the constant viscosity value is show at different Reynolds numbers.
(c) Visualization of the vorticity field for the NS (left-hand panel) and RNS (right-hand panel). The 3D images are obtained with the λ2
criterion. The snapshots are the vorticity field at a given time at the center of the cube.
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the “canonical” value ν, and the variance increases with the
Reynolds number. At low and moderate Reynolds numbers,
no negative event is recorded. Instead some are found at
Rλ ¼ 300, when the distribution turns out to be much
flatter. As discussed in recent works [39,41], the limit Rλ →
∞ and N → ∞ is singular and the different behavior of the
PDF reflects that. Furthermore, our results show that in the
cascade regime analyzed here, it is difficult to observe
extreme events on a reasonable observation time, notably
at small Rλ. As expected for the 3D case [26], the statistics
of α of the reversible and irreversible dynamics are
qualitatively different. The entropy production should be
the same in both dynamical ensembles, but in fact α is
related to entropy only in the reversible model, whereas it

bears no connection with it in the irreversible one. Our
results confirm this picture with α fluctuating little in the
irreversible model and not around ν, as found for the
reversible model.
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ρðtÞ ¼ huðt0Þuðt0 þ tÞi=σu, at Rλ ¼ 300.
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In conclusion, we have shown through high-resolved
numerical simulations that the Gallavotti’s conjecture of
dynamical ensemble equivalence is correct. We observe
that no matter the Reynolds number, provided sufficient
resolution is kept, not only the basic requirements of the
conjecture are fulfilled, but all the relevant statistical
observables are found indistinguishable in the irreversible
and reversible dynamical system. Furthermore, the scale-
by-scale analysis of the kinetic energy flux shows negligible
difference between the two models up to the dissipation
range, far beyond the original formal conjecture proposi-
tion. Wild fluctuations of the reversible viscosity are
encountered and at high Reynolds numbers, even negative
values are recorded, which point to local antidissipative
phenomena. However, these negative events remain
extremely rare. Our results confirm preliminary results
obtained in simplified dynamical models of turbulence [39].
Our results give empirical evidence that the chaotic

hypothesis from which the conjecture is originally derived
can be considered morally applicable to turbulent fluids.
That means in turn that nonequilibrium statistical mechan-
ics [52,86,87], and notably fluctuation relations, should
apply in some sense also to turbulent fluids. Furthermore, it
is shown that turbulence is unaffected by the precise
mechanism of dissipation. This corroborates the idea that
scales larger than the forcing are governed by Euler, as
recently proposed [88–90]. On the other hand, it paves the
way to the use of whatever phenomenological model in
coarse-grained approaches, provided the correct amount of
average rate of dissipation is enforced.
Some issues remain to be answered. While the reversible

system appears mathematically simpler because of the
constraint on the enstrophy, the presence of negative events
in viscosity makes it not well posed, shifting but not solving
the question of global existence of the solution. Rigorous
analysis lacks. The possibility to compute nonequilibrium
entropy and its behavior is appealing but the needed statistics
to make predictions seems overwhelming in 3D. More
notably, to exploit the new framework to get new insights
on the turbulence problem remains an unexplored route.
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