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To explore basin geometry in high-dimensional dynamical systems, we consider a ring of identical
Kuramoto oscillators. Many attractors coexist in this system; each is a twisted periodic orbit characterized
by a winding number q, with basin size proportional to e−kq

2

. We uncover the geometry behind this size
distribution and find the basins are octopuslike, with nearly all their volume in the tentacles, not the head of
the octopus (the ball-like region close to the attractor). We present a simple geometrical reason why basins
with tentacles should be common in high-dimensional systems.
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Basins of attraction are fundamental to the analysis of
dynamical systems [1–3]. Over the years, many remarkable
properties of basins have been discovered [4–9], most
notably that their geometry can be wild, as exemplified by
Wada basins [10], fractal basin boundaries [11,12], and
riddled or intermingled basins [13–17]. Yet despite these
foundational studies, much remains to be learned about
basins, especially in systems with many degrees of free-
dom. Even the simplest questions—how big are the basins,
and what shapes do they have?—constitute an active area of
research [18–36].
Given the rich properties of basins, it is perhaps not

surprising that even for locally coupled Kuramoto oscil-
lators—arguably one of the simplest dynamical systems on
networks—there are still riddles to be solved. In one study,
Wiley, Strogatz, and Girvan [18] numerically investigated a
ring of n identical Kuramoto oscillators and measured the
basin sizes of its coexisting attractors. All the attractors in
this system could be conveniently characterized by an
integer q, because they were all phase-locked periodic
orbits in which the oscillators’ phases formed q full twists
around the ring. By sampling the entire state space
uniformly, these authors found that the basin sizes for
the q-twisted states were Gaussian distributed as a function
of the winding number q.
More recently, Delabays, Tyloo, and Jacquod [28]

measured the basin sizes of the same system in a different
way. For each q, they estimated the distance from the q-
twisted state to its basin boundary. Then they used that

distance to calculate the volume of an associated hyper-
cube, which was taken as a proxy for the basin size.
Intriguingly, they reached a completely different conclu-
sion and reported that the basin sizes decreased exponen-
tially with jqj. The tension between the two results created a
puzzle that underscored our lack of understanding of basins
in even the simplest systems.
In this Letter, we resolve the tension by showing that

high-dimensional basins tend to have convoluted geom-
etries and cannot be approximated by simple shapes such as
hypercubes. Although they are impossible to visualize
precisely (because of their high dimensionality), we present
evidence that these basins have long tentacles that reach far
and wide and become tangled with each other. Yet
sufficiently close to its own attractor, each basin becomes
rounder and more simply structured, somewhat like the
head of an octopus [37].
Returning to the issue of the basin sizes, we find that

their volumes are proportional to e−kq
2

, not e−kjqj. The
discrepancy can be traced to how the latter distribution was
obtained [28]: it was based on local measurements and
thereby ignored the basin’s tentacles. Such estimates miss
nearly all of a basin’s volume, even for moderate network
sizes. In terms of our metaphor, almost all of a basin’s
volume is in its tentacles, not its head.
This finding is not limited to Kuramoto oscillators. We

provide a simple geometrical argument showing that, as
long as the number of attractors in a system grows
subexponentially with system size, the basins are expected
to be octopuslike. As further evidence of their genericity,
basins of this type were previously found in simulations of
jammed sphere packings [38,39], where they were
described as “branched” and “threadlike” away from a
central core [38] and accurate methods were developed for
computing their volumes [19,39,40]. There is also enticing
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evidence of octopuslike basins in neuronal networks [20],
power grids [22], and photonic couplers [41].
The equations for our Kuramoto model on a ring are

_θi ¼ sinðθiþ1 − θiÞ þ sinðθi−1 − θiÞ ð1Þ

for i ¼ 1;…; n. Here θiðtÞ ∈ S1 is the phase of oscillator i
at time t and n is the number of oscillators. For conven-
ience, we have written the equations in a frame rotating at
the common frequency ω of all the oscillators; without loss
of generality, we have set ω ¼ 0 by going into this frame.
We assume a periodic boundary condition, θnþ1ðtÞ ¼ θ1ðtÞ
mod 2π, since the oscillators are assumed to be connected
in a ring. One can show that the in-phase synchronous state
θiðtÞ ¼ θjðtÞ ∀ i; j; t is always an attractor for Eq. (1). But
if n is large, there are also many other competing attractors
[42–44]. In all of these, the oscillators are phase locked and
run at the same instantaneous frequency, _θi ¼ _θj ∀ i; j
(which can be set to zero in the rotating frame we are
using). In these states, the phases of the oscillators make q
full twists around the ring and satisfy θi ¼ 2πiq=nþ C,
where q is the winding number of the state [18]. These
twisted states exist for all q, but only those with jqj < n=4
are stable [28,34,43,44].
A natural question is then: What are the basin sizes for

each of the stable twisted states [18,28,45]? As mentioned
above, this question has been explored from two perspec-
tives, one global and one local. Before we present our new
results, we need to delve more deeply into both perspec-
tives, because understanding them will prove crucial to
interpreting the numerical results presented below.
In Ref. [18], Wiley, Strogatz, and Girvan used a simple

strategy of sampling initial conditions uniformly at random
in the entire state space to estimate the basin sizes, and
found that their volumes were proportional to e−kq

2

.
However, even for a moderate number of oscillators, it
would take an astronomical number of samples to cover the
n-dimensional state space at a reasonable resolution (e.g.,
for n ¼ 80 used in Ref. [18], around 1080 points would be
needed for a resolution of 10 points in each direction, which
is obviously completely infeasible). So one could well
doubt that the results obtained by this procedure are
meaningful, let alone reliable.
For this reason, Delabays, Tyloo, and Jacquod [28]

designed a more sophisticated procedure to measure the
basin sizes. First they analytically calculated the distance
from each twisted state to the nearest saddle point on its
basin boundary [46] and found that distance to be propor-
tional to 1 − 4jqj=n. Then, assuming that the basin is well
approximated by an n-dimensional hypercube, the authors
estimated the basin size to be proportional to ð1 − 4jqj=nÞn,
which approaches e−4jqj as n → ∞. This strategy enabled
the authors to measure the basin sizes for twisted states with
large winding numbers, which are extremely difficult to
reach from uniform global sampling.

The two results, e−kq
2

and e−4jqj, cannot both be right. In
fact, it seems quite possible that both could be wrong, since
the number of samples used in Ref. [18] could easily be
insufficient to capture the correct scaling relation and the
hypercube assumed in Ref. [28] could easily be a poor
approximation of the correct basin geometry.
To clarify what is going on here, we begin by testing

convergence of the basin size estimates when we do finer
and finer uniform global sampling. Figure 1 plots the
relative basin sizes of the q-twisted states for n ¼ 83
oscillators, as estimated by the measured probability p
of the states being reached from random initial conditions.
At N ¼ 107 samples, the stable twisted states with 8 <
jqj ≤ 20 are completely undetected due to their minuscule
basin sizes. However, the estimates of basin sizes for
twisted states with jqj < 7 are clearly converged already
for N ¼ 106 samples.
These numerical convergence results can be understood

theoretically as follows. For each q-twisted state, a random
point in the state space is either inside or outside of its
basin. Thus, using results from repeated Bernoulli experi-
ments, the standard error of the relative basin size p after N
samples is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞp

=
ffiffiffiffi
N

p
[21,29]. For p ≪ 1, the rela-

tive standard error is 1=
ffiffiffiffiffiffiffi
pN

p
, which is about 5% for p ¼

10−3.5 (a value of p that corresponds to jqj ¼ 6 in Fig. 1)
and 106 samples. Note that the relative standard error does
not depend on the dimension n of the state space, despite
the increased difficulty of adequately covering the state
space for larger n. After confirming the convergence of the
basin size estimates, we can see that the data strongly favor
Gaussian dependence over exponential scaling, which is
further supported by a least squares fit using quadratic
functions.
Next, we examine the hypercube assumption and

develop an intuitive picture for the basin geometry.
Following Ref. [28], for many randomly selected directions
we numerically identify the shortest distance away from the
q-twisted state that is needed to escape the basin.
Specifically, for each q-twisted state, we incrementally

FIG. 1. Probability of converging to the q-twisted states from
random initial conditions. The system (1) consists of 83 identical
Kuramoto oscillators with nearest-neighbor coupling.
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increase the perturbation along a random direction until
we find a point that is outside of the basin. This proce-
dure is repeated for 1000 independent directions,
and the dimension-normalized Euclidean distance d ¼
ðPn

i¼1 d
2
i =nÞ1=2 between the escaping point and the attrac-

tor is recorded for each direction. (Here, di ∈ ½0; π� is the
absolute phase difference between the ith oscillators of the
two states.) The distributions of the escape distances
are shown as dashed curves in Fig. 2. Indeed, similar to
the results reported in Ref. [28], the distributions are all
fairly concentrated with tight supports. This suggests that
the basins are fairly isotropic, which motivated the use of
the hypercube approximation in Ref. [28].
However, when we compare these distributions with the

data obtained from uniform global sampling, an incon-
sistency emerges. For each sampled initial condition in
Fig. 1, we recorded the distance d between the starting
point and the attractor it converged to. The solid curves in
Fig. 2 show the distributions of these distances for q-
twisted states with more than 104 samples (data for states
with q < 0 are not shown as they mirror their q > 0

counterparts). One immediately notices that these distri-
butions have much larger means than the dashed distribu-
tions and the two groups of distributions have essentially no
overlap. In other words, the majority of a basin is outside of
the basin boundary identified through local perturbations.
This observation calls into question the hypercube
assumption. Indeed, if we take the means μq of the dashed
distributions as the half side lengths of the hypercubes that

approximate basins, the ratio between the volume of all
hypercubes and the volume of the full state space is

P
20
q¼−20ð2μqÞ83
ð2πÞ83 ≈ 10−34: ð2Þ

Note that 10−34 is still an overestimation of the ratio
because of the inequality of arithmetic and geometric
means. Thus, the hypercubes based on the basin boundaries
identified through local perturbations miss almost the entire
state space. This suggests that each basin must be “leaking”
outside of its hypercubelike core and forms tentacles like an
octopus. Moreover, for large n, most of the basin volume is
concentrated in these tentacles.
Now, circling back to the distributions extracted from the

globally sampled data (solid curves in Fig. 2), we notice
some additional interesting features. First, the distributions
for different q almost completely overlap and seem to
follow a master distribution. Second, this master distribu-
tion agrees with the distribution of the distance between
two randomly selected points in the state space (green solid
curve). This agreement implies that, statistically speaking,
the points in a basin are distributed in the state space as if
they were randomly placed and the basin profiles are in a
sense uniform across different winding numbers q.
Moreover, as n → ∞, the master distribution approaches

a delta function at dð∞Þ ≈ 1.81 (due to the central limit
theorem). In this limit, almost all points in the state space
are dð∞Þ away from any q-twisted state, and how the basins
look outside the sphere with radius dð∞Þ is irrelevant for
determining basin sizes. These considerations are not
limited to Kuramoto oscillators and apply to fixed-point
attractors in any high-dimensional dynamical system with a
compact state space.
To further support the octopus picture of the basins, we

scan many different radial lines emanating from twisted
states, in an effort to detect rays leaving and reentering the
same basin (as one would expect they would, if the basins
have tentacles that meander far and wide in state space). For
this purpose, we apply random perturbations to twisted
states, whose components are selected independently and
uniformly from ½−απ; απ�, where α tunes the extent of the
perturbation. In Fig. 3, we vary α from 0.4 to 1.0 and
estimate the probability p of returning to the original
twisted state for different values of α. Interestingly, for
all q considered, p stays roughly constant around a nonzero
value for α > 0.8. This result seems to contradict the
dashed curves in Fig. 2, which suggest that almost all rays
leave the original basin after a certain distance threshold is
crossed. This apparent contradiction is resolved once one
realizes that the rays can reenter the same basin when they
are farther away, provided that the basins are equipped with
tentacles like an octopus instead of being convex like a
hypercube.
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FIG. 2. Local measurements of basins miss almost all of state
space. The dashed curves represent the distributions of the
distance away from a q-twisted state at which one first escapes
its basin. The solid curves are the distributions of the distance
between a q-twisted state and points inside its basin found
through uniform global sampling. The solid curves for different q
collapse onto a single distribution, which matches the distribution
of the distance between two randomly selected points in the state
space. This distribution approaches a delta function at dð∞Þ ≈
1.81 as n → ∞ (black dashed line). If we use hypercubes to
approximate basins based on dashed distributions (the strategy
adopted in Ref. [28]), then we omit almost all the points in all the
basins. Simple calculations show that, for n ¼ 83 considered
here, these hypercubes account for no more than 10−34 of the
entire state space.
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This intuitive picture of rays repeatedly exiting and
reentering the same basin is further supported by the plot
shown in the inset of Fig. 3, which depicts the α-dependent
convergence back to the in-phase state (q ¼ 0) for 100
representative rays. We see that no ray is inside the basin for
all α. But for each α, there are always rays that are inside the
basin. Moreover, if a ray leaves the basin at a certain value
of α, it often reenters the same basin at a larger value of α.
In fact, such repeated reentries can be seen as the

defining feature of basins with tentacles. For any given
fixed-point attractor, we say its basin is octopuslike if there
is a nonzero probability that a ray emanating from the
attractor along a random direction intersects the basin at
disjoint intervals. Note that an octopuslike basin is neces-
sarily concave, but not all concave basins are octopuslike.
Moreover, we say an octopuslike basin has long tentacles if
the basin cannot be confined within any hypercubes other
than the full state space, which is the case for the Kuramoto
systems studied here.
Figure 4 is a further attempt to visualize the structure of

high-dimensional basins, now by examining randomly
oriented two-dimensional (2D) slices of state space, either
far from a twisted state or close to one. Specifically, we
look at slices spanned by θ0 þ α1P1 þ α2P2, αi ∈ ð−π; π�.
Here, P1 and P2 are n-dimensional binary orientation
vectors in which n=2 randomly selected components are
1 and the rest of the components are 0. The results below
are not sensitive to the particular realizations of P1 and P2.
However, the choice of the base point θ0 matters a great
deal. For example, in Fig. 4(a), we choose θ0 to be a
random point in the state space. Despite the fact that each
basin is connected (because the dynamics are described by
differential equations), the basins look fragmented in this
2D slice. Perhaps another metaphor than tentacles—a ball
of tangled yarn—better captures the essence of the basin

structure in this regime, far from any attractor, in which
differently colored threads (representing different basins)
are interwoven together in an irregular fashion. As one
might expect, a random slice of the state space such as this
one is dominated by basins corresponding to small values
of jqj.
The basin structure near an attractor is strikingly differ-

ent. In Fig. 4(b), we set θ0 to be the twisted state with
q ¼ 15. Here, the central basin (q ¼ 15) is surrounded by
competing basins in a structured fashion. As made evident
by the color scheme, the basins near an attractor are
organized like an onion. As we peel away the onion layer
by layer, the winding number of the basin gradually
increases and finally reaches q ¼ 15 at its core.
(Although we know from above that there must be holes
in the onion for the tentacles of the center basin to snake
through.)
Finally, we explain why octopuslike basins should be

prevalent in high-dimensional dynamical systems.
Consider an n-dimensional compact state space with side
length L in each direction (after suitable rescaling). We say
a basin is boxy if it can be confined in a hypercube of side
length l < L. If all basins of a system are boxy for an l that
does not depend on n, then to fill the entire state space we
need at least ðL=lÞn different basins. So if the number of
attractors in a system grows subexponentially with n, the
basins cannot all be boxy. In particular, this is true for the
Kuramoto systems we consider here, whose number of
attractors grows linearly with n.
Basins can be nonboxy because they are octopuslike,

with long tentacles that slither throughout state space and
escape any potentially confining hypercube. But other
scenarios can also occur. Imagine a limiting case where
the head of the octopus expands to engulf the tentacles;
then the basins stretch continuously across state space in
some or all directions (as they do, for instance, in a system
with just one attractor). Nevertheless, we predict that basins

FIG. 3. Probability of returning to a q-twisted state after a local
perturbation. Each component of the perturbation is selected
randomly and uniformly from ½−απ; απ�. For all q considered, p
stays roughly constant for α > 0.8. This suggests that the basins
are more like octopuses than hypercubes. The inset further
confirms this picture, where we show 100 representative pertur-
bations leaving and reentering the basin of the in-phase state
(q ¼ 0) as α is increased. Here, black indicates inside and white
indicates outside of the basin.

FIG. 4. Two-dimensional slices of state space reveal the
intricacy of basin geometry. (a) Random slice. Basins are color
coded by the winding number q of the corresponding attractor.
The basins appear fragmented. (b) Slice centered at the twisted
state with q ¼ 15. The color scheme highlights the onionlike
structure of the basins; the core (basin for q ¼ 15) is wrapped
inside many layers corresponding to basins with gradually
decreasing q.
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with tentacles are generic for high-dimensional dynamical
systems with a modest number of attractors, because they
provide the least constrained way to fill the state space. Our
prediction is supported by studies on basins in diverse
physical systems [20,38,39], from neuronal circuits to
jammed sphere packings. In some cases one can already
visually identify tentacles in low-dimensional slices of the
basins [22,41].
By illuminating the structure of octopuslike basins and

establishing their prevalence, we hope this work will
motivate future studies of basin structure in high-dimen-
sional systems. Some promising directions include the
definition of octopuslike basins for chaotic attractors,
understanding the role of saddles in creating basin ten-
tacles, and generating new insights on reservoir computers
[47] and adversarial examples in neural networks [48] by
characterizing their basin geometries.
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