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Quantum coherence is a useful resource for increasing the speed and decreasing the irreversibility of
quantum dynamics. Because of this feature, coherence is used to enhance the performance of various
quantum information processing devices beyond the limitations set by classical mechanics. However, when
we consider thermodynamic processes, such as energy conversion in nanoscale devices, it is still unclear
whether coherence provides similar advantages. Here we establish a universal framework, clarifying how
coherence affects the speed and irreversibility in thermodynamic processes described by the Lindblad
master equation, and give general rules for when coherence enhances or reduces the performance of
thermodynamic devices. Our results show that a proper use of coherence enhances the heat current without
increasing dissipation; i.e., coherence can reduce friction. In particular, if the amount of coherence is large
enough, this friction becomes virtually zero, realizing a superconducting-like “dissipation-less” heat
current. Since our framework clarifies a general relation among coherence, energy flow, and dissipation, it
can be applied to many branches of science from quantum information theory to biology. As an application
to energy science, we construct a quantum heat engine cycle that exceeds the power-efficiency trade-off
bound on classical engines and effectively attains the Carnot efficiency with finite power in fast cycles.

DOI: 10.1103/PhysRevLett.127.190604

Introduction.—In quantummechanics, different states can
exist simultaneously as a superposition. This feature is the
source of many amazing phenomena unique to quantum
mechanics, and is expected to provide quantum advantage in
various tasks. This expectation has proven to be true, at least
theoretically, in the field of quantum information theory. In
several information processing tasks, such as computation
[1,2], communication [3,4], and sensing [5,6], quantum
coherence (superposition) can be used to achieve perfor-
mance beyond the limits imposed by classical mechanics.
On the other hand, there is no clear answer to the

question whether coherence has a similar effect in thermo-
dynamic processes. There is still no unified view on even
the basic question of whether coherence improves the
performance of heat engines [7–14]. This reflects the fact
that the relationship between irreversibility and coherence,

both of which being the central concepts of thermodynam-
ics and quantum mechanics, is still not clearly understood.
In this Letter, we tackle this problem and establish

general rules on how coherence affects the thermodynamic
irreversibility in finite-time thermodynamic processes
described by the Lindblad master equation, satisfying the
detailed balance relation. To achieve this goal, we focus on
trade-off relations between thermodynamic irreversibility
and the energy flow, a fine refinement of the second law of
thermodynamics that has been actively studied in recent
years [15–22], and clarify when and to what extent
quantum coherence affects the trade-off. Our main results
indicate that quantum coherence can enhance the energy
flow without increasing irreversibility. In particular, we
show that, when the coherence is a large enough, the energy
flow obtains an interesting scaling behavior like super-
conducting electric current. In this case, the energy flow
scales as a macroscopic order while keeping dissipation at a
constant order, realizing a dissipation-less current.
Our framework provides a general classification on the

types of quantum coherence that induce gains or losses
in the thermodynamic performance. We find that coherence
between energy eigenstates with different energies
always induces losses. This is consistent with previous
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observations that coherence between the ground and
excited states that is built up during a heat engine cycle
degrades its performance, sometimes termed as the effect of
“quantum friction” [8,10]. On the other hand, we find that
coherence between degenerate energy eigenstates leads to
gains, working as “quantum lubrication.”
Since our framework provides a unified understanding

among thermodynamic irreversibility, energy flow, and
quantum coherence, it has many applications in physics.
As an application to energy science, we consider a quantum
heat engine that utilizes quantum coherence. We give a
general condition about which type of quantum coherence
enhances the power and efficiency of heat engines and
construct several examples that exceed a universal power-
efficiency trade-off relation [18] for classical engines. In
particular, we show that the dissipation-less current-driven
quantum heat engine approximately attains the Carnot
efficiency with finite power in fast cycles. In view of
recent proposals on the equivalence between quantum heat
engines and natural and artificial light-harvesting systems
[23,24], we also discuss possible directions of using our
results to understand the role of coherence and its impact on
the energy transfer efficiency in light-harvesting systems.
Setup and results.—We consider a system connected

to multiple heat baths and assume that the time evolution of
the reduced density matrix of the system ρ obeys the
standard Lindblad master equation [25–29],

∂ρ
∂t ¼ −

i
ℏ
½HðtÞ; ρ� þ

X
a

Da½ρ�; ð1Þ

where Da½ρ� ≔
P

ω γaðωÞ½La;ωρL
†
a;ω − 1

2
fL†

a;ωLa;ω; ρg� is
the dissipator describing the effect of the heat bath labeled
by a. Here HðtÞ is the time-dependent Hamiltonian of
the system that may have degeneracy, and the Lindblad
operator La;ω describes a quantum jump between energy
eigenstates with energy difference being ℏω: ½La;ω; HðtÞ� ¼
ℏωLa;ω [25]. The positive coefficient γaðωÞ is assumed to
satisfy the detailed balance relation γaðωÞ=γað−ωÞ ¼
exp½βaℏω�, where βa is the inverse temperature of the
heat bath a.
Our purpose is to clarify how coherence affects the trade-

off relation between the energy flow and dissipation. For
this purpose, we focus on the ratio between the total heat
current Jtot ≔

P
a jJaðρÞj and the entropy production rate

_σ: J2tot= _σ. Here JaðρÞ ≔ Tr½HDa½ρ�� is the heat current that
describes the energy flow from the heat bath a to the system
[30]. Also, the entropy production rate is defined as
_σðρÞ ≔ _SðρÞ −P

a βaJaðρÞ ≥ 0, which is a key quantity
that measures dissipation (thermodynamic irreversibility)
in stochastic thermodynamics [30–32]. Here, _SðρÞ ¼
−Tr½∂tρ log ρ� is the von Neumann entropy flux of the
system [30], and −βaJa is interpreted as the entropy
increase in the heat bath a. Therefore, the entropy

production quantifies the total amount of entropy that is
produced in the entire system, and the second law of
thermodynamics is obtained as a direct consequence of
the non-negativity of _σ. Since the quantities Jtot and _σ,
respectively, describe the energy flow and dissipation, the
current-dissipation ratio J2tot= _σ can be interpreted as an
indicator for the strength of friction. To support this
interpretation, we remark that Joule’s law in electric
conduction shows that the current-dissipation ratio is
inversely proportional to the electric resistance. This ratio
also can be used as an indicator for the performance of heat
engines because, loosely speaking, large Jtot corresponds to
a large output power and small _σ corresponds to a large
heat-to-work conversion efficiency.
To evaluate the effect of coherence on the ratio J2tot= _σ, we

denote the energy eigenstates of the Hamiltonian as je; ji,
where e is the energy eigenvalue and j is introduced to
label degenerate states. We introduce two diagonalized
states ρbd ≔

P
e ΠeρΠe and ρsd ≔

P
e;j Πe;jρΠe;j, where

Πe;j ¼ je; jihe; jj and Πe ¼
P

jΠe;j is the projection to the
eigenspace of H whose eigenvalue is e. The subscript “bd”
and “sd” are the abbreviations for “block diagonalized” and
“strictly diagonalized.” In the state ρbd, coherence between
degenerate energy eigenstates is kept, but coherence
between different energy eigenspaces is lost. In the state
ρsd, on the other hand, all coherence is lost. Note that if the
Hamiltonian is nondegenerate, ρbd ¼ ρsd.
Result 1. Coherence effects on the current-dissipation

ratio: Now, let us discuss how the quantum coherence
affects the current-dissipation ratio J2tot= _σ. We first show
that coherence between different eigenspaces does not
enhance the current-dissipation ratio [33],

J2totðρÞ
_σðρÞ ≤

J2totðρbdÞ
_σðρbdÞ

: ð2Þ

According to (2), coherence between different eigenspaces
only decreases the ratio J2tot= _σ. Namely, if the system
Hamiltonian has no degeneracy, quantum coherence
increases friction and does not improve the performance
of heat engines.
We next show that coherence between degenerate energy

eigenstates does enhance the current-dissipation ratio [33],

J2totðρsdÞ
_σðρsdÞ

≤
Acl

2
; ð3Þ

J2totðρbdÞ
_σðρbdÞ

≤
Acl þ Aqm

2
; ð4Þ

where the quantities Acl and Aqm are non-negative
real numbers, given by Acl≔Tr½Xρsd� and Aqm ≔
CXCl1ðρbdÞ, with X≔

P
a;ωðℏωÞ2γaðωÞL†

a;ωLa;ω and
CX ≔ maxe;j;j0∶j≠j0 jhe; jjXje; j0ij. The quantity Cl1ðρbdÞ is
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the l1-norm of coherence with respect to the eigenstates of
the Hamiltonian, which is a well-known coherence measure
in the resource theory of coherence [36], defined as the
summation of the absolute value of the nondiagonal
elements: Cl1ð…Þ ≔ P

ðe;jÞ≠ðe0;j0Þ jhe; jj…je0; j0ij.
Inequalities (3) and (4) provide general upper bounds on

the current-dissipation ratio J2tot= _σ with and without coher-
ence, respectively. When the state has no coherence,
inequality (3) gives a “classical” upper bound Acl=2 on
the current-dissipation ratio. Namely, heat engines without
coherence (i.e., classical heat engines) never exceed this
bound. On the other hand, inequality (4) implies that
coherence between degenerate eigenstates allows the cur-
rent-dissipation ratio to exceed its classical limit, up to
Aqm=2. The inequality (4) also shows that this quantum
lubrication effect requires nonvanishing Aqm, which is
realized by (i) quantum coherence between degeneracies
[to have a nonvanishing Cl1ðρbdÞ] and (ii) a collective
system-bath coupling mechanism such that La;ω collec-
tively acts on degenerate energy eigenstates (to have a
nonvanishing CX).
Combining (2) and (4), the upper bound ðAcl þ AqmÞ=2

also applies to a general state ρ. Later, we give a quantum
heat engine example that demonstrates this quantum
lubrication effect and show that the current-dissipation
ratio exceeds the classical limitation Acl=2 (see Fig. 3).
Result 2. Dissipation-less heat current: We further find

an interesting scaling behavior in (4) as follows. Suppose
that Aqm scales as OðN2Þ, where 2N is the number of
degeneracy in the system Hamiltonian. Then, the upper
bound of the ratio JtotðρÞ2= _σðρÞ becomes OðN2Þ, which
allows an Oð1Þ entropy production rate with an OðNÞ heat
current. Therefore, if we can scale up the number of
particles and make N macroscopically large, our inequality
)4 ) implies that large nondiagonal elements and a collective
coupling mechanism may produce a macroscopic current
without macroscopic dissipation.
The above type of current without dissipation can be

realized in a concrete model using the 2N-state
Hamiltonian, given by

H ¼
XN
j¼1

ℏω0je; jihe; jj; ð5Þ

where jg; ji and je; ji are the jth degenerate ground state
and excited state, respectively, and ℏω0 is the energy gap
(see also Fig. 1). We consider the single bath case (i.e., a
takes only a single value) and give the Lindblad jump
operators Lω0

≔
P

j;j0 je;jihg;j0j and L−ω0
≔ L†

ω0
, describ-

ing collective decays and excitations, to have a nonvanish-
ing CX. Now, let us prepare an initial state ρþ ≔
pgð0Þjg;þihg;þj þ peð0Þje;þihe;þj, which has a large
amount of coherence Cl1ðρþÞ ¼ Cl1ðρþbdÞ ¼ OðNÞ, such

that Aqm¼OðN2Þ. Here, pgð0Þ=peð0Þ ¼ ð1þ 1=NÞeβℏω0 ,
where β is the inverse temperature of the bath,
jg;þi ≔ P

j jg; ji=
ffiffiffiffi
N

p
, and je;þi ≔ P

j je; ji=
ffiffiffiffi
N

p
. As

a result, the heat current scales as a macroscopic order
while keeping dissipation at a constant order, realizing a
dissipation-less current,

JtotðρþÞ ¼ Nℏω0γðω0Þpeð0Þ ¼ OðNÞ; ð6Þ

_σðρþÞ ¼ N log

�
1þ 1

N

�
γðω0Þpeð0Þ ¼ Oð1Þ: ð7Þ

This example demonstrates that when there exists sufficiently
large coherence between degeneracies, friction can become
vanishingly small via quantum lubrication.We remark that, in
the 2N-state model, the dissipation-less current cannot occur
without quantum coherence (see Fig. 1.)
The initially prepared state ρþ is not the steady state, and

therefore the dissipation-less current gradually decreases
as the system approaches to the steady state. However, in
the Supplemental Material, Sec. II D [33], we construct a
dissipation-less current with a steady state by attaching the
system to two heat baths.
Result 3. Finite-time heat engine without dissipation:

By utilizing the dissipation-less current that appears in the
2N-state model, we can construct a fast heat engine cycle
that approximately attains the Carnot efficiency with finite
output power. Each step of the heat engine cycle is briefly
explained in Fig. 2. For a stationary cycle (i.e., a cycle
whose initial and final states are the same), the first law of
thermodynamics implies that the extracted work is given
by W ¼ QH −QC, where QH ¼ R τH

0 JHdt > 0 is the heat
absorbed from the hot bath andQC ¼ −

R τC
0 JCdt > 0 is the

heat released to the cold bath. The output power is then
defined as the work per unit time:W=τ, where τ ¼ τH þ τC.
The thermodynamic efficiency is defined as η ¼ W=QH,
which quantifies the heat-to-work conversion ratio. Note
that η is always bounded from above by the Carnot
efficiency ηCar ¼ 1 − βH=βC, as a direct consequence of
the second law. As we discuss in Supplemental Material,

FIG. 1. Schematic diagram of the 2N-state model. (a) No
coherence (ρ ¼ ρsd). In this case, Acl ¼ OðNÞ and Aqm ¼ 0 hold
for arbitrary ρ (see Supplemental Material, Sec. II B [33]).
Therefore, in order to obtain OðNÞ heat current, dissipation
inevitably scales asOðNÞ. (b) WithOðNÞ coherence (e.g., ρþ). In
this case, correlated decays and excitations occur and Acl ¼
OðNÞ and Aqm ¼ OðN2Þ hold. As a result, an OðNÞ heat current
with a constant-order dissipation is realized.
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Sec. II C [33], the cycle time of our heat engine can be
shorter than the typical relaxation time of the system,
and the output power scales as OðNÞ, while the thermo-
dynamic efficiency asymptotically reaches the Carnot
efficiency: η ¼ ηCar −Oð1=NÞ.
Result 4. Numerical demonstration of the quantum

advantage: When the number of degeneracy is large, our
2N-state model approximately achieves the Carnot effi-
ciency with finite power. What if the number of degeneracy
is small? Even in this case, our main results indicate
interesting properties in the study of quantum heat engines.
Here, instead of using the 2N-state Hamiltonian (5) with
N ¼ 2, we consider a 2-qubit-state superradiant model that
has been experimentally realized with superconducting
qubits [38,39] (note that the qualitative behavior of these
two models are not different). The Hamiltonian of the
system is given by H ¼ ℏωðσz1 þ σz2Þ, and the collective
jump operator is given by L ¼ σ−1 þ σ−2 , where σzi and σ−i
are the z component of the Pauli operator and the lowering
operator for the ith qubit. The Lindblad master equation is
given by ∂tρ¼−ði=ℏÞ½H;ρ�þΓ↓½LρL†−ð1=2ÞfL†L;ρg�þ
Γ↑½L†ρL−ð1=2ÞfLL†;ρg�, where Γ↓ ¼ Γ0½1þ
expð−βℏωÞ�−1 and Γ↑ ¼ Γ0½1þ expðβℏωÞ�−1. When the
system is in contact with the hot bath, we set ω ¼ ωH
and β ¼ βH, and the heat current is given by Jtot ¼ JH.
Note that similar relations hold for the cold bath as well.
We use the natural basis of the qubit Πe;j ∈ fjg; gi;
jg; ei; je; gi; je; eig to define ρsd. We consider the heat
engine cycle described above and numerically check the
inequalities (3) and (4), plotted in Fig. 3. Then, clearly, the

ratio JHðρÞ2= _σðρÞ exceeds the classical limit Acl=2 (note
that ρ ¼ ρbd holds in our example). Finally, from (2)–(4),
we obtain the power-efficiency trade-off relation (see
Supplemental Material, Sec. IV [33] for details)

Wcl=τ
ηCar − ηcl

≤ cĀcl and
W=τ

ηCar − η
≤ cðĀcl þ ĀqmÞ; ð8Þ

where c ≔ βCηCar=½2ð2 − ηCarÞ2� is a constant depending
only on βC and βH, Ācl and Āqm are the time average of Acl

and Aqm per one engine cycle, andWcl and ηcl are the work
and efficiency for ρsd. The left-hand side of (8) is the
ratio between the output power and the deviation of the
thermodynamic efficiency from the Carnot efficiency, and
thus having a large value of this power-efficiency ratio
means that the performance of the heat engine is high.
Similar to (4), when there is no coherence, the power-
efficiency ratio of the heat engine is bounded by cĀcl. In
this sense, cĀcl is the classical limitation on the perfor-
mance of heat engines. Meanwhile, when there exists
coherence, a quantum heat engine can exceed the classical
limitation up to cĀqm. With the 2-qubit superradiant model,
we numerically check that the power-efficiency ratio
actually exceeds the classical limitation cĀcl for some
parameter range (Fig. 4).
Applications and discussion.—Before concluding this

Letter, we discuss several applications of our theoretical
framework.
Finite-time Carnot engine: We gave a heat engine model

that approximately attains the Carnot efficiency with finite
power. Note that previous studies have utilized nonlinearity

FIG. 2. Schematic diagram of the fast cycle attaining Carnot
efficiency with finite power. The cycle consists of four steps. Step
1: the 2N-state system is connected to the hot bath, absorbing the
dissipation-less heat QH for a time duration τH. Step 2: the
interaction between the system and the hot bath is turned off, and
the energy gap of the system is changed from ℏωH to ℏωC [37].
Step 3: the system is connected to the cold bath, releasing the
dissipation-less heat QC for a time duration τC. Step 4: the
interaction between the system and the cold bath is turned off, and
the energy gap of the system is changed from ℏωC to ℏωH.

FIG. 3. Numerical check of the current-dissipation trade-off
inequalities (3) and (4) as a function of time t during step 1
(interaction with the hot bath) of the 2-qubit heat engine cycle.
Red and orange solid curves are the current-dissipation ratio
J2H= _σ for the states ρ and ρsd, respectively. Black dashed curve is
the quantum bound ðAcl þ AqmÞ=2 and the blue dashed curve is
the classical bound Acl=2. Note that the ratio J2HðρÞ= _σðρÞ exceeds
the classical bound, demonstrating the coherence-induced quan-
tum lubrication effect. The parameters are ωH ¼ 1.9, ωC ¼ 1,
βH ¼ 1.1, βC ¼ 2.1, τH ¼ 0.2, Γ0 ¼ 1 (Figs. 3 and 4) and
τC ¼ 0.4 (Fig. 3).
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[40,41], time-reversal symmetry breaking [42,43], non-
Markovian effects [44], large heat capacity [45], criticality
[46–48], and a large cycle time compared with the
relaxation time [49]. On the other hand, our strategy
utilizes the dissipation-less current via coherence between
degenerate states and a collective system-bath coupling. We
note that a collective coupling mechanism requires precise
system-bath engineering, and it is challenging for a large
system size. However, in view of the experimental progress
of realizing superradiance effects [50], we believe that our
strategy is meaningful and can be realized with current
quantum information technologies.
Quantitative understanding of the role of coherence in

photosynthesis: An important issue in biology is the role of
coherence in photosynthesis [51–56]. Although there are
many results reporting the effect of coherence in photo-
synthetic processes [53–56], there is no unified under-
standings about how the coherence actually contributes to a
high light-harvesting efficiency performance. Since theo-
retical models are often described by the quantum master
equation [53,55], it would be interesting to apply our
framework to this problem.
Thermodynamic meanings of speakable and unspeak-

able coherence: In quantum information theory, there
are two classes of coherence: speakable coherence and
unspeakable coherence [57]. Roughly speaking, speakable
coherence refers to the coherence between bases that can be
relabeled (e.g., computational basis in a quantum com-
puter). Conversely, unspeakable coherence refers to the
coherence between bases that cannot be relabeled (e.g.,
energy eigenstates with different energy eigenvalues). In
our case, the difference between ρbd and ρsd reflects the
difference between the speakable and unspeakable coher-
ence in ρ. Therefore, our results mean that, in the two
classes, only the “nonunspeakable” part of the speakable

coherence, quantified by Cl1ðρbdÞ, contributes to the per-
formance enhancement.
In this Letter, we gave a unified understanding of how

quantum coherence affects the thermodynamic irreversibil-
ity for open quantum systems obeying the Lindblad
master equation satisfying the detailed balance relation,
through the current-dissipation ratio. Our results can be
summarized in three basic rules as follows: 1. Quantum
friction: coherence between different energy eigenspaces
always reduces the ratio. 2. Quantum lubrication: when the
system collectively interacts with the bath, coherence
between degenerate states can be used to increases the
ratio. 3. Dissipation-less current: if there is enough coher-
ence between degenerate states, the heat current can
become macroscopic order, while dissipation remains at
constant order. From the observations, we have demon-
strated the quantum advantage in the performance of heat
engines enhancement in the 2-qubit system example and
have constructed a heat engine model that effectively
attains the Carnot efficiency with finite power.
Our dissipation-less current induced by coherence

resembles the superconducting current without energy
dissipation, induced by large off-diagonal components.
In addition, unlike the discussions of the vanishing local
resistance in a mesoscopic (quantum phase-coherent) con-
tact [58], our 2N-state model produces a large current
between two heat baths, while the (global) entropy pro-
duction effectively vanishes. We expect that our findings
will further contribute to the understandings and design of
low-dissipative energy transporting mechanisms in energy
science, biology, and condensed matter physics.
Our results completely cover the cases described by the

Lindblad master equation, satisfying the detailed balance
relation. On the other hand, for other cases, the general
relationship between coherence and irreversibility is still
unknown.Wewould like to close this Letter by pointing out
that this problem is still an open question.
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