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Hole spin qubits are frontrunner platforms for scalable quantum computers, but state-of-the-art devices
suffer from noise originating from the hyperfine interactions with nuclear defects. We show that these
interactions have a highly tunable anisotropy that is controlled by device design and external electric fields.
This tunability enables sweet spots where the hyperfine noise is suppressed by an order of magnitude and is
comparable to isotopically purified materials. We identify surprisingly simple designs where the qubits are
highly coherent and are largely unaffected by both charge and hyperfine noise. We find that the large spin-
orbit interaction typical of elongated quantum dots not only speeds up qubit operations, but also
dramatically renormalizes the hyperfine noise, altering qualitatively the dynamics of driven qubits and
enhancing the fidelity of qubit gates. Our findings serve as guidelines to design high performance qubits for
scaling up quantum computers.
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Introduction.—Spin qubits in hole quantum dots are
leading candidates to process quantum information [1–5].
Elongated hole quantum dots hold particular promise
because of their large and tunable direct Rashba spin-orbit
interaction (DRSOI) [6–9]. This property enables fast all-
electric gates [10–15] via electric dipole spin resonance
(EDSR) [16–19] and could pave the way towards scalable
quantum computers. A major source of decoherence in
these qubits comes from the hyperfine interaction between
the confined hole and the nuclear spins. Isotopic purifica-
tion could decrease the number of nuclear defects by 2
[20,21] to 3 [22] orders of magnitude, however, this
procedure is expensive and not routine in state-of-the-art
devices, where hyperfine noise still drastically limits the
qubit performance [13].
The hyperfine interactions in hole nanostructures origi-

nate from dipolar coupling [23–29] and in Si and Ge their
amplitude is predicted to be comparable to electrons
[30,31]. In contrast to electrons [32–34], however, these
interactions are strongly anisotropic, approaching the Ising
limit in planar structures [29,35]. Ising coupling causes a
slow power-law spin decay depending on the orientation of
the field [36,37] and could result in an enhancement of the
qubit lifetime when the nuclear spins are suitably prepared
[38–42].
In this work, we show that in elongated hole quantum

dots the amplitude of the hyperfine interactions as well as
their anisotropy are fully tunable by external electric fields,
resulting in devices with an order of magnitude smaller
hyperfine noise. This decrease in noise can save 2 orders of
magnitude of isotopic purification. Strikingly, by ana-
lyzing common designs, we find optimal working points
in Si fin field effect transistors (FinFETs) [13,43,44] where
both hyperfine and charge noise [45] are suppressed

simultaneously, strongly boosting the qubit coherence.
Also, we examine the interplay between DRSOI and
hyperfine interactions [46]. The large DRSOI substantially
renormalizes the hyperfine noise and qualitatively alters the
spin dynamics in EDSR experiments, yielding more coher-
ent qubit operations. We foresee that the tunability of the
hyperfine interactions could be exploited also in hybrid
systems [47] to engineer a coherent coupling between
quantum dots and nuclear spin qubits [48–52].
Hyperfine interactions in elongated quantum dots.—

Spin qubits confined in quantum dots are generally
described by the effective Hamiltonian [26,27,29] HQ ¼
ðbþ hÞ · σ=2, comprising a Zeeman field b ¼ μBgB and an
Overhauser field h ¼ P

k AkΓðrkÞIk=n0. These fields
model the magnetic interactions of the confined particle
with an external magnetic field B and with an ensemble of
nuclear spins Ik at position rk, respectively. Here, μB is the
Bohr magneton, n0 is the nuclear density, Ak is the
hyperfine coupling strength, and we neglect small long-
range corrections to the hyperfine interactions [29].
The microscopic properties of the system determine the

values of the matrices g of g factors and ΓðrkÞ of local spin
susceptibilities. While in electron quantum dots these
matrices are proportional to the identity matrix, resulting
in isotropic interactions, in hole dots they have a richer
structure and heavily depend on the mixing of heavy (HH)
and light hole (LH) bands [53], that carry spin 3=2 and 1=2,
respectively. In particular, HH dots have a strongly aniso-
tropic g factor [54] and Ising hyperfine interactions ∝ σzhz
[26,27,29,55,56], while in LH dots the anisotropy is less
pronounced and the transverse components hx;y of h are
two times larger than hz [30,57].
In this work, we analyze quantum dots that are tightly

confined in the ρ ¼ ðx; yÞ plane and extend in the z
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direction. In these systems, the HH-LH mixing can be
engineered by designing the dot [8,45] and is highly
tunable by external electric fields. It is accurately modeled
by the Hamiltonian

H ¼ HLK þ VCðρÞ þ
ℏωz

2l2z
z2 − eEyy; ð1Þ

which includes the Luttinger-Kohn Hamiltonian HLK [53]
and an electric field Ey perpendicular to the long direction.
Here, the dot is defined by a harmonic potential with
frequency ωz and length lz, and an abrupt potential VCðρÞ.
This potential models etched nanowires, but we emphasize
that our theory also describes squeezed dots in planar
heterostructures [9].
When the nanowires are grown along high symmetry

axes, e.g., zk½001� or [110], the ground state Kramer
partners Ψ↑↓ of H are well approximated by Ψ↑↓≈
e−izσx=lSOψ↑↓ðrÞ, see Sec. I A of [58]. The spinors

ψ↑ðrÞ ¼ φðzÞ
�
ψHðρÞ

����þ 3

2

�
þ ψLðρÞ

���� − 1

2

��
¼ T ψ↓ðrÞ

ð2Þ

locally hybridize different eigenstates of the spin-3=2
matrix Jz by the spin-resolved and Ey-dependent wave
functions ψH;LðρÞ. The time-reversal operator T flips the
spin and complex conjugates the functions, and φðzÞ is the
harmonic oscillator ground state. The spin-dependent local
phase in Ψ↑↓ accounts for the large DRSOI [6–9], which is
parametrized by an Ey-dependent spin-orbit length lSO
typically of tens of nanometers [13,14]. Here, we compute
ψH;L and lSO by numerically discretizing Eq. (1) in analogy
to [45]. Because we only study dots where Ey is aligned to
high symmetry axes, the DRSOI points in the x direction
[6–8,45].
When jBj≲ 1 T, the magnetic interactions are weaker

than ℏωz and by projecting the hyperfine HHF ¼
P

k δðr −
rkÞAkIk · J=2n0 [26,27,29,30,32] and Zeeman Hamiltonian
HZ ¼ 2κμBB · J [53] onto Ψ↑↓, we find [58]

ΓðrÞ ¼ jφðzÞj2Rx

�
2z
lSO

�0BB@
Re½γþ� Im½γ−� 0

−Im½γþ� Re½γ−� 0

0 0 γz

1
CCA; ð3Þ

and gij ¼ 4κ
R
drΓijðrÞ. Here, we neglect small corrections

coming from terms ∝ J3i [30,53], ∝ 1=l2z [7,9,59], and
from magnetic orbital effects [59,60]. We define γ� ¼
ψLðψL � ffiffiffi

3
p

ψHÞ, γz ¼ ð3jψHj2 − jψLj2Þ=2, and RxðθÞ is
an anticlockwise rotation matrix of an angle θ around x.
This SOI-dependent rotation causes the well-known

suppression e−l
2
z=l2SO of the g factor [60,61], and also

significantly alters the hyperfine interactions.
If no effort is put in preparing the state of the nuclear

spins [38–41], the Overhauser field h is Gaussian distri-
buted [32,33,37,62], and has zero mean and diagonal
covariance matrix Σij ¼ ℏ2σiδij=τ̄2 [58]. The characteristic
time of hyperfine-induced qubit decay is

τ̄ ¼ ℏ
jAkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3N

νIðI þ 1Þ

s
; ð4Þ

where ν is the isotopic abundance of the nuclear defects,
N ¼ ffiffiffiffiffiffi

2π
p

lzAρn0 is the number of atoms in the dot, andAρ

is the area of the wire cross section. In particular, for natural
Si and Ge dots with N ≈ 104 atoms [13,43,44], we find
τ̄Si ≈ 0.36 μs and τ̄Ge ≈ 0.11 μs [63]. The dimensionless
diagonal elements of Σ are

σx ¼ σ0x; and σy;z ¼ σM þ e−ð2l2z=l2SOÞðσ0y;z − σMÞ; ð5Þ

and at l−1SO ¼ 0 they attain the values

σ0x;y ¼ Aρ

Z
dρðjψLj4 þ 3jψLψHj2 � 2

ffiffiffi
3

p
Re½ψ3

LψH�Þ;

ð6aÞ

σ0z ¼ Aρ

Z
dρ

�
3

2
jψHj2 −

1

2
jψLj2

�
2

: ð6bÞ

The DRSOI renormalizes σy;z to the mean value
σM ¼ ðσ0y þ σ0zÞ=2: this renormalization has important
consequences on the qubit dynamics. The dependence of
σ0i on strain [64–68], on the direction of the field, and on
extra valence bands is discussed in Sec. I B of [58].
Tunable hyperfine noise in spin qubits.—Because of the

anisotropy of the hyperfine interactions, the spin dynamics
strongly depends on the direction of the external fields. For
simplicity, we consider B aligned along the confinement
axes, such that bkB [69–72], and we analyze the dephas-
ing of an idle qubit by finding the transition probability
PðtÞ¼hjh−je−iHQt=ℏjþij2ig between the states j�i ¼ ðj0i�
j1iÞ= ffiffiffi

2
p

. Here, j0; 1i are eigenstates of b · σ and the outer
brackets indicate the average of h over a Gaussian
distribution with covariance Σ [29,32,62,73].
For typical values jBj ∼ 100 mT, the hyperfine broad-

ening is small, i.e., jbjτ̄=ℏ ffiffiffiffi
σi

p ≫ 1, and

PðtÞ ≈ 1

2
−
1

2

e−ðt2=2T2
0
Þ cos½ωBtþ ϕðtÞ=2�ffiffiffi

4
p ð1þ t2=τ21Þð1þ t2=τ22Þ

; ð7Þ

where ϕðtÞ ¼ arctanðt=τ1Þ þ arctanðt=τ2Þ. The hyperfine
interactions parallel to b dampen the coherent spin pre-
cession with frequency ωB ¼ jbj=ℏ by a Gaussian factor
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with time scale T0 ¼ τ̄= ffiffiffiffiffiσkp , while the transverse inter-
actions cause a power law decay with time scales τi ¼
ωBτ̄

2=σi⊥ [27,29]. We call σk and σ1;2⊥ the dimensionless
diagonal elements of Σ in Eq. (5) parallel and perpendicular
to b, respectively. Equation (7) is derived in Sec. II of [58],
including also arbitrary field directions.
The power law tail is observable when τ1;2=T0 ¼

ωBτ̄
ffiffiffiffiffi
σk

p =σ1;2⊥ ≲ 1, a condition that requires highly aniso-
tropic hyperfine interactions when ωB is in the GHz range.
This anisotropy can be engineered by the confinement
potential. For example, in rectangular wires [10] grown
along the crystallographic axes (CAs), high aspect ratios
Lx=Ly ≫ 1 enable Ising hyperfine interactions ∝ hyσy
because the ground state comprises HHs polarized
along the tighter confinement direction [26,27,29,30]. In
Fig. 1(a), we show that the anisotropy decreases in typical
Si and Ge wires where Lx ∼ Ly, resulting in a fast Gaussian
qubit decay for any direction ofB. In particular, at Lx ¼ Ly

the Gaussian times Ti
0 at Bki ¼ fx; y; zg are related by

Tx
0 ¼ Ty

0 ≈ Tz
0=2, consistent with LH dots [30].

The hyperfine interactions are strikingly different when
the cross section is rotated by π=4 with respect to z, as
illustrated in Fig. 1(b). We call this orientation direct
Rashba axes (DRAs) [45] because it guarantees the largest
DRSOI in wires [8,9,72]. First, because of the sizeable
HH-LH mixing even in planar heterostructures, yielding
DRSOI [74], the hyperfine interactions are non-Ising at
Lx=Ly ≫ 1. The hyperfine anisotropy is still pronounced in
wide Gewires, but it decreases notably in Si, where the spin
decay remains Gaussian with times Ti

0 of hundreds of
nanoseconds. Surprisingly, however, we find that the
interplay of confinement potential and anisotropies of
HLK [8,53], restores Ising interactions at specific aspect
ratios Lx=Ly ≈ 1.3ð2.7Þ in Si (Ge). At these points the
system has a HH-like ground state polarized along y and
T0 → ∞ when B⊥y, see Fig. 1(b), resulting in sweet spots

where the qubit lifetime is largely enhanced and where
the spin decay has a slow power-law tail with a longer
timescale τ1 ¼ ωBτ̄

2=σy of tens of microseconds.
The presence of sweet spots for certain Lx=Ly suggests

that the anisotropy of the hyperfine interactions could also
be externally controlled by an electric field Ey, which
compresses the wave function to the upper boundary of the
wire. In Fig. 2(a), we study a square Si DRAwire with side
L, and we show the effects of the Ey modulation of the
wave function width on Tx;y;z

0 by solid black, dashed blue,
and dashed red lines, respectively. A similar analysis
for cylindrical Ge-Si core-shell nanowires is provided in
Sec. I B of [58]. As anticipated, we observe the appearance
of working points at Esq ≈ 3.1ϵc=eL where hyperfine noise
is suppressed by ∼20 times when B⊥y, as seen by
comparing the blue curves to the black and dashed red
ones in Fig. 2(a). Here, ϵc ¼ ℏ2π2γ1=mL2, and for typical
wires with L ¼ 20 nm, the field Esq ≈ 1.25 V=μm is
experimentally accessible.
However, Ey also produces a large DRSOI [8,9], that

does not affect Tx
0 but strongly reduces Tz

0 at Esq, yielding
Tz
0 ≈ Ty

0 ≈ τ̄=
ffiffiffiffiffiffi
σM

p ≪ Tx
0, see Eq. (5) and the solid lines in

(a) (b)

FIG. 1. Gaussian decay time T0 in idle qubits in rectangular
wires. We examine Si (solid lines) and Ge (dashed lines) dots
when Ey ¼ 0 and show T0 for different directions of B as a
function of Lx=Ly. In (a) and (b), we study wires grown along the
CA and DRA, respectively. Confinement (crystallographic) axes
are shown with black (blue) arrows.

(a)

(c)

(b)

(d)

FIG. 2. Tunability of the hyperfine interactions. In (a) and (b),
we show T0 against Ey in Si wires grown along the DRA with
square and equilateral triangular cross sections, respectively. Ey

is measured in units of ϵc=eL ≈ 3.22 × ðL=10 nmÞ−3 V=μm.
Solid (dashed) lines represent results that include (neglect)
DRSOI, see Eq. (5). In (b) we include the decay times TSA

0 of
qubits in SA wires (thin dashed lines); lSO=L is shown in
dashed gray lines. In (c), we show the g factors in triangular
and square wire qubits. Black, blue, red lines correspond to B
aligned to x, y, z direction, respectively, and we use lz ¼ L. In
(d), we include high energy states in triangular wires and
compare cross sections having different aspect ratios r and the
same area Aρ ¼

ffiffiffi
3

p
L2=4. Here, L ¼ 30 nm.
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Fig. 2(a). As a consequence, in this system the hyperfine
sweet spot remains only when Bkx. We note that this field
direction is useful to store information, but it is incompat-
ible with EDSR, that requires that the Zeeman and spin-
orbit fields are perpendicular to each other [16].
Strikingly, this issue is resolved in Si DRA FinFETs with

triangular cross section [13,43–45], where the hyperfine
sweet spots appear when B⊥x. In fact, as shown in
Fig. 2(b), the field directions minimizing the hyperfine
noise depend on the shape of the cross section, and in
contrast to square wires, in triangular fins Ty;z

0 ≳ 18Tx
0 at

Etr ≈ 5.9ϵc=eL. Here, Ey pushes the wave function to a
corner, favoring a HH polarization along x, see Sec. I B
of [58]. More remarkably, because triangular wires lack
inversion symmetry [45], the DRSOI ∝ l−1SO is also switched
off close to Etr [dashed gray line in Fig. 2(b)], resulting in a
highly coherent qubit, largely unaffected by both hyperfine
and charge noise [45]. To drive these qubits, it suffices to
switch on the DRSOI by tuning Ey with experimentally less
demanding all-electric protocols.
In Fig. 2(b), we also compare the hyperfine noise in

DRA FinFETs and in state-of-the-art devices [13,43,44],
where the fins are grown along the standard axes (SAs)
zk½110� and yk½100�. In this case, we estimate TSA

0 ≈
0.2–0.6 μs depending on the direction of B, in reasonable
agreement with experiments [13]. At the sweet spot DRA
fins yield maxðTDRA

0 Þ ≈ 5maxðTSA
0 Þ. We emphasize that

because τ̄ ∝ 1=
ffiffiffi
ν

p
[see Eq. (4)], the hyperfine noise in

DRA wires is comparable to the noise in isotopically
purified SA wires, where νisoSi ¼ 800 ppm [20,21] and the
decay time maxðTSA

0 Þ is 7.5 times longer than in natural Si.
We note that the position of the hyperfine sweet spots

coincides with a minimal value of the g factor and with a
small Zeeman energy, see Fig. 2(c). However, the hyperfine
noise is suppressed in a broader range of Ey in the vicinity
of Esq and Etr, where the g factor is sizable. We find also
that the hyperfine sweet spots persist when high energy
valence bands are considered [58] and are robust against
small variations of the aspect ratio r of the triangular cross
section. In these cases, as shown in Fig. 2(d), the sweet
spots are shifted to different values of Ey. Interestingly,
when r > 1, we observe a cross-over between a regime
where Tx

0 ≪ Ty
0 as in equilateral triangles to a regime where

Tx
0 ≫ Ty

0 as in square wires. Similar transitions can be
induced by strain, as discussed in Sec. I B of [58].
Hyperfine noise during qubit operations.—The DRSOI

enables fast Rabi oscillations and qubit operations via
EDSR [16]. Neglecting small hyperfine-induced EDSR
terms [62,75], this effect originates from an ac electric field
applied along the wire, that shifts the dot from its static
position by dðtÞ ¼ d0 sinðωDtÞ. To obtain the fastest osci-
llations, we consider here a Zeeman field b ¼ ℏωB½0;
sinðθBÞ; cosðθBÞ�, perpendicular to the DRSOI, and we
work at resonance ωB ¼ ωD. In a frame moving with

the dot, h becomes time-dependent hðtÞ because
ΓðrkÞ → Γ½rk þ dðtÞez�, see Eq. (3), and the spin dynamic
changes drastically [76,77]. Moving to a frame rotat-
ing with frequency ωD around b, and in the rotating
wave approximation, only a few Fourier components
hm ¼ ωD

R 2π=ωD
0 dteimωDthðtÞ=2π contribute [76], and

HR ≈
ℏωR þ h1⊥

2
σx þ

h0k
2
σz: ð8Þ

The Rabi frequency is ωR ¼ ωDd0=lSO, h0k ¼ h0y sinðθBÞþ
h0z cosðθBÞ, and h1⊥ ¼ h1y cosðθBÞ − h1z sinðθBÞ. The terms
discarded are negligible for small but finite drive, with
d0 ≳ lSO

ffiffiffiffi
σi

p
=ωBτ̄, see Sec. I C of [58]. A generalization of

Eq. (8), valid off resonance, is also derived in [58].
In hole dots, lSO ∼ 10 nm [13,14] is rather short and

small driving amplitudes d0=lz ≪ 1 suffice for fast qubit
manipulation. In this case, the covariance of h is

ΣR ¼ ℏ2

τ̄2

0
BB@

d2
0

4l2z
½σ⊥ þ 4l2z

l2SO
σM� 0 − d0

lSO
σM

0 0 0

− d0
lSO

σM 0 σk

1
CCA; ð9Þ

where σ⊥;k ¼ σy;z ∓ ðσy − σzÞ sinðθBÞ2 are the compo-
nents of the hyperfine noise parallel and perpendicular
to b, respectively [see Eq. (5)].
From Eqs. (8) and (9), one expects a Gaussian and a

power-law decay determined by ΣR
11 and ΣR

33, respectively.
We emphasize that because of the weak driving the
Gaussian timescale is enlarged by lz=d0, thus enhancing
the coherence of qubit operations [76] to a level comparable
to magnetically driven spins [78]. Also, the power-law
timescale τ1 ¼ ωRτ̄

2=σk ∝ d0 is now comparable to the
Gaussian timescale even for rather isotropic hyperfine
interactions, in striking contrast to idle qubits.
More precisely, the spin-flip probability averaged over a

Gaussian distributed field h with covariance ΣR is [58]

PRðtÞ ≈
1

2
−
1

2

e−½ðt2Þ=2T2
RðtÞ� cos½ωRtþ ϕRðtÞ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2=τ21
4
p ; ð10Þ

with ϕRðtÞ ¼ arctanðt=τ1Þ − ωRt3ðΣR
13=ΣR

33Þ2=ðt2 þ τ21Þ.
Surprisingly, we observe that the strong DRSOI not only
quantitatively renormalizes ΣR

ii, but also introduces off-
diagonal elements ΣR

13 ¼ ΣR
31 that alter the spin dynamics

qualitatively. In particular, they result in a time-dependent
Gaussian timescale

1

T2
RðtÞ

¼ 1

T2
<
−

1

τ̄2
d20
l2SO

σ2M
σk

t2

t2 þ τ21
; ð11Þ

that interpolates between the short time T< ¼ ℏ=
ffiffiffiffiffiffiffi
ΣR
11

p
,

when t ≪ τ1, to the longer time T> ¼ ðT−2
< −

σ2Md
2
0=τ̄

2l2SOσkÞ−1=2 > T<, when t ≫ τ1.
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A comparison between different timescales in a typical
Rabi experiment is shown in Fig. 3(a) and we note that in
this case, the decay times are of tens of microseconds, much
longer than in idle qubits. Rabi oscillations with similarly
high coherence were recently observed in hole Si FinFETs
[13]. We also predict that at the large values of DRSOI
achieved in current experiments [12–15] the interplay
between the different decay times will yield measurable
effects, see Fig. 3(b), further decreasing the effect of
hyperfine noise during qubit operations.
In conclusion, we studied the hyperfine interactions of a

hole spin qubit in elongated quantum dots and we showed
that they can be tuned over a wide range of parameters by
device design and by external electric fields. In certain
devices, this tunability enables sweet spots where the
hyperfine noise is strongly reduced and becomes compa-
rable to isotopically purified materials. Remarkably, in Si
FinFETs charge and hyperfine noises are both suppressed
at these sweet spots, pushing this architecture towards
new coherence standards. Combined with the high speed
and fidelity of operations, these highly coherent qubits
can be reliable building blocks for scalable quantum
computers.
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