
Complete Incompatibility, Support Uncertainty, and Kirkwood-Dirac Nonclassicality

Stephan De Bièvre *
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For quantum systems with a finite dimensional Hilbert space of states, we show that the complete
incompatibility of two observables—a notion we introduce—is equivalent to the large support uncertainty
of all states. The Kirkwood-Dirac (KD) quasiprobability distribution of a state—which depends on the
choice of two observables—has emerged in quantum information theory as a tool for assessing nonclassical
features of the state that can serve as a resource in quantum protocols. We apply our result to show that,
when the two observables are completely incompatible, only states with minimal support uncertainty can
be KD classical, all others being KD nonclassical. We illustrate our findings with examples.
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Introduction.—The nonclassical features of quantum
mechanical states can be of a very diverse nature.
Incompatible, noncommuting, and complementary or
conjugate observables, (de)coherence, interference, uncer-
tainty principles, negativity or nonreality of quasipro-
bability distributions, entanglement, contextuality, and
nonlocality are concepts used to evaluate the degree to
which quantum states of a variety of physical systems may
exhibit manifestly nonclassical behavior in various exper-
imental situations. Partially in order to obtain a better
understanding of quantum mechanics and partially because
such nonclassical behavior has proven essential for tasks in
quantum information theory and metrology, the study of
their properties and of the relationship between them
attracts continued attention [1–18].
That strong links exist between the trio composed of

incompatibility, uncertainty, and (non)classicality is famil-
iar from standard quantum mechanics and from quantum
optics. As the prototypical pair of very strongly incompat-
ible observables one may consider Q and P, two conjugate
observables. The total noise ðΔQÞ2 þ ðΔPÞ2 [19] can then
be seen as a measure of the uncertainty of a state. It satisfies
ðΔQÞ2 þ ðΔPÞ2 ≥ 1 for all states, and this lower bound is
reached only for the coherent states which are, in this
context, considered “classical.” These results are well
known to be intimately linked to the canonical commutation
relation ½Q;P� ¼ i. It expresses the very strong sense in
which Q and P fail to commute, and—in this sense—their
very strong incompatibility. In the first part of this Letter we
will show that, provided suitably adapted notions of
incompatibility, of uncertainty, and of nonclassicality are
adopted, precisely the same situation occurs in quantum
systemswith a d < þ∞ dimensional Hilbert spaceH, as for
systems of qudits or qubits.
In that context, the starting point is not the choice of two

observables such as Q and P, but of two orthonormal bases
A ¼ fjaiig and B ¼ fjbjig, that can be thought of as

eigenbases of two observables A and B. If, for example, A
and B have nondegenerate spectra, and if they are com-
patible in the usual sense that ½A;B� ¼ 0, then all their
eigenprojectors commute so that each jaii is up to a phase
equal to some jbji. This notion, and others close to it
[3,10,13,17,18], is a very strong form of compatibility, the
negation of which therefore yields a very weak notion of
incompatibility. For our purposes, we need a stronger such
notion, the complete incompatibility of the bases, a concept
we introduce in Definition 1. We then show that it is
equivalent to the statement that the smallest possible
support uncertainty [defined in Eq. (1)] of any pure state
is dþ 1 (Theorem 2). This can be paraphrased as saying
that complete incompatibility of observables is equivalent
to large (support) uncertainty of states. Indeed, when on the
contrary the bases A and B are compatible in the above
sense, the smallest possible support uncertainty of any pure
state is 2: it is attained for any of the basis vectors.
Having thus closely linked the complete incompatibility

of observables to the support uncertainty of states, it
remains to understand how both relate to the nonclassicality
of states, a task we turn to in the second part of this Letter.
The notion of nonclassicality arising naturally in systems
with a finite dimensional Hilbert space is Kirkwood-Dirac
(KD) nonclassicality. Recall that a state is said to be KD
nonclassical if its KD distribution [see Eq. (4)], a finite
dimensional analog of the well-known Wigner distribution,
has negative or complex values. KD nonclassicality has
come to the forefront in recent years because of its use in
quantum tomography [5,6,9] as well as in the theory and
applications of weak measurements, contextuality, and
their relation to nonclassical effects in quantum mechanics
[2,7,8,12]. In addition, KD nonclassicality has been linked
to out-of-time-ordered correlators [11] and proposed as a
measure for scrambling [14]. It was furthermore shown to
provide an operational quantum advantage in postselected
metrology [15]. Since the KD distribution and hence the
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KD nonclassicality of ψ depend not only on ψ , but also on
A and B, the question that arises naturally is what proper-
ties of A and B will ensure the prevalence of KD-
nonclassical states in Hilbert space? We will show that
the bases A and B need to be completely incompatible for
this to occur. In that case, only states with minimal support
uncertainty can be KD classical, all others being KD
nonclassical (Corollary 3). The strong analogy with the
situation of two conjugate variables and the corresponding
coherent states that we recalled above is manifest.
Complete incompatibility implies furthermore that the
support uncertainty of a state provides a very efficient
and convenient KD-nonclassicality witness (Theorem 2).
We illustrate our findings on a number of examples, in
particular mutually unbiased and spin bases.
A and B representations. Support uncertainty.—Given a

basis A, we associate to each state ψ its A representation,
which is the vector of its components on the A basis:
ðha1jψi;…; hadjψiÞ ∈ Cd. The A support Sψ of ψ is then
defined as the set of outcomes i ∈ ⟦1; d⟧ that occur with
nonzero probability when a measurement in the A basis
is made: Sψ ¼ fi ∈ ⟦1; d⟧jhaijψi ≠ 0g. We will write
nAðψÞ ¼ jSψ j, where jSj denotes the number of elements
in the set S ⊂ ⟦1; d⟧. Hence nAðψÞ [respectively, nBðψÞ]
counts the number of nonvanishing overlaps haijψi
(respectively, hbjjψi). One should think of nAðψÞ and
nBðψÞ as the size of the support or the “spread” of the
probability distributions jhaijψij2 and hbjjψij2 of the state
ψ in the A and B representations, which is one possible
measure of their uncertainty. Many other such measures
exist, notably the entropic ones [20,21].
In our analysis of the incompatibility of two basesA and

B, the support uncertainty nA;BðψÞ of ψ arises naturally. It
is defined as

nA;BðψÞ ≔ nAðψÞ þ nBðψÞ ð1Þ

and has proven useful in other contexts previously [22–26].
We also introduce the minimal support uncertainty nmin

A;B

of the bases A, B as nmin
A;B ¼ minψ≠0nA;BðψÞ. Clearly,

2 ≤ nmin
A;B ≤ dþ 1, as can be seen by considering for ψ

the basis vectors jaii or jbji. WhenA and B are compatible
in the usual sense recalled above, nmin

A;B ¼ 2.
As a further instructive example, consider a two qubit

state space H ¼ C2 ⊗ C2 with A the computational
basis and B ¼ fjþ;þi; jþ;−i; j−;þi; j−;−ig with j�i ¼
ð1= ffiffiffi

2
p Þðj0i � j1iÞ. Thinking of the qubits as spin-1=2

systems, the basis A, respectively B, is an eigenbasis of
Jz, respectively of Jx. Considering the singlet state

jJ2 ¼ 0i ¼ 1ffiffiffi
2

p ðj01i − j10iÞ ¼ 1ffiffiffi
2

p ðj þ −i − j −þiÞ ∈ H;

one has nAðjJ2 ¼ 0iÞ ¼ 2 ¼ nBðjJ2 ¼ 0iÞ. It is also
readily seen that 2 < nmin

A;B ¼ 4 < dþ 1 ¼ 5.
We now show that the maximal possible value of nmin

A;B,
nmin
A;B ¼ dþ 1, corresponds to a strong form of incompat-

ibility of the bases that we call complete incompatibility.
Complete incompatibility.—We define, for any index

set S ⊂ ⟦1; d⟧, the orthogonal projector ΠAðSÞ ¼P
i∈S jaiihaij. We write ΠAðSÞH for the jSj-dimensional

subspace ofH onto which it projects: it contains all states ψ
whose A support Sψ lies in S.
Definition 1.—We say that two bases A and B are

completely incompatible (COINC) if and only if all index
sets S, T in ⟦1; d⟧ for which jSj þ jTj ≤ d have the
property that ΠAðSÞH ∩ ΠBðTÞH ¼ f0g.
While the definition is purely algebraic, its physical

interpretation is readily given in terms of the quantum theory
of selective projective measurements [1,27,28]. Note that the
projectors ΠAðSÞ and ΠBðTÞ are observables with eigenval-
ues 1 and 0. Their measurement is said to be fine-grained if
jSj ¼ 1, jTj ¼ 1, and coarse-grained otherwise. Repeated
selective measurements of ΠAðSÞ and of ΠBðTÞ on a system
initially prepared in ψ systematically yield the outcome 1 if
and only if ΠBðTÞΠAðSÞψ belongs to ΠAðSÞHnf0g. Hence,
if this occurs, ΠAðSÞH ∩ ΠBðTÞH ≠ f0g. In other words,
the definition of COINC bases is equivalent to the state-
ment that such repeated compatible selective measure-
ments cannot occur for any insufficiently coarse-grained
measurements, i.e., for any S, T for which jSj þ jTj ≤ d.
This is a very stringent requirement, whence the term
“complete” incompatibility.
The link between complete incompatibility and support

uncertainty is given by
Theorem 2.—A and B are COINC iff nmin

A;B ¼ dþ 1.
In other words, two bases are COINC iff the minimal

support uncertainty nmin
A;B of all states takes on its maximal

possible value, namely, dþ 1. In particular, when the bases
are COINC, there are no states for which the supports Sψ ,
Tψ are small, in the sense of nA;BðψÞ ≤ d. This property of
COINC bases is reminiscent of an analogous property of
conjugate operators Q and P. Indeed, it is well known that
there do not exist states ψ for which both the Q repre-
sentation hxjψi vanishes outside some bounded set S ⊂ R
and the P representation hpjψi vanishes outside some
bounded set T ⊂ R [29].
The definition of complete incompatibility transcribes

this crucial property of conjugate operators to the finite-
dimensional setting; in that case the restriction jSj þ jTj ≤
d is unavoidable since, for dimensional reasons, whenever
jSj þ jTj > d, the intersection ΠAðSÞH ∩ ΠBðTÞH must
be nontrivial.
The theorem implies that the two bases A, B for the

two-qubit system introduced above are not COINC since
4 ¼ nmin

A;B < dþ 1 ¼ 5 and despite the fact that they are
eigenbases of the noncommuting Jz and Jx. This illustrates
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that complete incompatibility is a stronger property than
noncommutativity. Also, when the system is in the singlet
state jJ2 ¼ 0i, for which nA;BðjJ2 ¼ 0iÞ ¼ 4, successive
measurements of Jx and Jz consistently give the result 0, so
that the measurement of one does not, for this state, perturb
the measurement of the other.
Proof.—For all states ψ , ψ ∈ ΠAðSψÞH ∩ ΠBðTψ ÞH ≠

f0g. If the bases are COINC, this implies jSψ j þ jTψ j > d.
So nmin

A;B > d. Since for the basis vectors we know
nA;BðjaiiÞ ¼ dþ 1, we conclude nmin

A;B ¼ dþ 1. We prove
the converse by proving its contraposition. Suppose A and
B are not COINC. Then there exist S, T, with jSj þ jTj ≤ d
and ΠAðSÞH ∩ ΠBðTÞH ≠ f0g. Let 0 ≠ ψ ∈ ΠAðSÞH ∩
ΠBðTÞH. For this state nAðψÞ ≤ jSj, nBðψÞ ≤ jTj. Hence
nA;BðψÞ ≤ d and nmin

A;B ≤ d.
Another property of COINC bases in which their

incompatibility manifests itself, is that haijbji ≠ 0 for all
i, j. Indeed, if, for example, ha1jb1i ¼ 0, then ja1i belongs
to ΠAðSÞH ∩ ΠBðTÞH for S ¼ f1g and T ¼ f2;…; dg.
Since jTj þ jSj ¼ d, this contradicts the definition. Hence
each basis vector jaii has full B support and a measurement
in the basis B on a system prepared in the state jaii can
yield any postmeasurement state jbji with nonvanishing
probability, a clear hallmark of incompatibility. In addition,
that haijbji ≠ 0 for all i; j ∈ ⟦1; d⟧ is equivalent to the
property that none of the projectors jaiihaij commutes with
any of the jbjihbjj. This is clearly stronger than the usual
notion of incompatibility, which only requires that at least
one such pair does not commute.
Complete incompatibility: A criterion and examples.—

Before turning to the link between complete incompati-
bility and KD nonclassicality, we provide further examples
of bases that are or are not COINC. Let U be the unitary
transition operator between A and B, defined as Ujaji ¼
jbji, with matrix elements Uij ¼ haijbji in A. A useful
criterion of complete incompatibility is
Lemma 3.—A and B are COINC if and only if none of

the minors of the matrix U vanishes.
Recall that a k minor of U is the determinant of a k by k

submatrix ofU obtained by removing d − k rows and d − k
columns from U. The statement and proof are implicit in

Ref. [24]; we give a straightforward argument in the
Supplemental Material [30]. As an immediate application,
one sees that, in dimensions d ¼ 2 and d ¼ 3, two bases
A and B are COINC iff for all 1 ≤ i, j ≤ d, haijbji ≠ 0,
a condition that is readily checked. In dimension 2 this is
obvious. In dimension 3, note that each column of U is a
multiple of the complex conjugate of the vector product of
the two other columns. Since its components are 2 minors,
their nonvanishing follows from the nonvanishing of all
matrix elements of U. Hence the bases are COINC. When
d ≥ 4, the above is no longer true, as we will see.
To synthetically represent the support properties of all

states with respect to two given bases one may use an
uncertainty diagram. This is the collection of all points
ðnA; nBÞ in the nA-nB plane for which there is a ψ so that
nAðψÞ ¼ nA and nBðψÞ ¼ nB. Theorem 2 asserts that the
uncertainty diagram of A, B lies above the line segment
nA þ nB ¼ dþ 1 iff the bases are COINC. This is illus-
trated in Fig. 1 where, as further discussed below, panels (a)
and (d) concern COINC bases, and panels (b), (c), and
(e) bases that are not COINC. The uncertainty diagram is
delimited from below through an uncertainty principle
originally shown for the Fourier transform on finite groups
[22], but which has much larger validity [25,26]. It reads

nAðψÞnBðψÞ≥M−2
A;B; whereMA;B ¼max

i;j
jhaijbjij: ð2Þ

A simple proof is provided below. It follows that the
uncertainty diagram of any two bases lies above or on the
hyperbola nAnB ¼ M−2

A;B.
It is proven in Ref. [24] that none of the minors of the

discrete Fourier transform (DFT) transition matrix
UDFT;i;j ≔ haijbji ¼ ð1= ffiffiffi

d
p Þ exp½ið2π=dÞij� vanish if and

only if d is a prime number. Lemma 3 then implies the DFT
is COINC iff d is prime. The uncertainty diagrams for
the DFT in dimension 5 and 6 are displayed in Figs. 1(a)
and 1(b). One clearly observes it lies above the segment
nA þ nB ¼ dþ 1 when d ¼ 5, but not when d ¼ 6, as
expected from the previous arguments. The DFT is an
example of a transition matrix for a larger family of bases,
called mutually unbiased bases (MUBs). They have found

(a) (b) (c) (d) (e)

FIG. 1. Uncertainty diagrams. Dashed curve: nAðψÞnBðψÞ ¼ M−2
A;B. Dot-dashed line: nAðψÞ þ nBðψÞ ¼ dþ 1. Diamonds (blue):

KD-nonclassical states. Squares (red): KD-classical states. (a) DFT: d ¼ 5, M−2
A;B ¼ 5, nmin

A;B ¼ 6. (b) DFT: d ¼ 6, M−2
A;B ¼ 6,

nmin
A;B ¼ 5 < 7. (c) Complex MUBs: d ¼ 4, M−2

A;B ¼ 4, nmin
A;B ¼ 4 < 5. (d) Perturbed MUB as in Eq. (3); d ¼ 4, t ¼ 0.1,

M−2
A;B ¼ 2.97 < 4, nmin

A;B ¼ 5. (e) Spin 2 transition matrix; d ¼ 5, M−2
A;B ¼ 8=3 < 5, nmin

A;B ¼ 4 < 6. Hexagons (magenta): KD-classical
and KD-nonclassical states.
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numerous applications in various quantum information
protocols [5,32–36]. We refer to Refs. [37,38] for reviews
on MUBs. MUBs are characterized by the property that
jhaijbjij2 ¼ d−1 for all i, j so that all measurement out-
comes when measuring B on a system prepared in a basis
vector of A (or vice versa) are equally probable. In view of
this such bases are sometimes considered maximally
incompatible. The above observation however implies
MUBs are not necessarily COINC. In fact, when d ¼ 4,
no MUBs are COINC, as easily seen from their explicit
expression [30], and Lemma 3. This is also apparent from
Fig. 1(c), which shows the presence of states at
nA ¼ 2 ¼ nB, so that nA;B ¼ 4 < 5 ¼ dþ 1.
In the study of out-of-time-ordered correlators, one

encounters pairs of bases A and BðtÞ, where jbiðtÞi ¼
expð−iHtÞjbii, so that

UðtÞ ¼ expð−itHÞU; ð3Þ

where H is self-adjoint. Figure 1(d) shows the uncertainty
diagram for a perturbed MUB matrix U of the above form,
with Hjk ¼ −Hkj ¼ i, 1 ≤ j < k ≤ d. One observes by
inspecting the figure and using Theorem 2 that UðtÞ is
COINC when t ¼ 0.1 while it is not when t ¼ 0, as seen
above. The emergence of COINC bases from the pertur-
bation of non-COINC bases is a more general phenomenon
the theoretical origin of which we shall explain else-
where [39].
Figure 1(e) shows the uncertainty diagram for the

eigenbases of Jz and Jx for a spin 2. It clearly does not
lie above nA þ nB ¼ dþ 1 ¼ 6 in that case, indicating the
bases are not COINC, despite the fact that Jx and Jz do not
commute and are therefore incompatible in the usual sense
of the word. The same situation occurs for all integer s, as is
readily shown from an examination of the Wigner rotation
matrices [40] that contain zeroes [30] so that they are not
COINC. In this example, there exist both KD-nonclassical
and KD-classical states with nA ¼ 4, nB ¼ 2 and with
nA ¼ 2, nB ¼ 4.
Further properties of completely incompatible bases and

their uncertainty diagrams, as well as the link between
complete incompatibility and noncommutativity will be
explored elsewhere [39].
Characterizing KD nonclassicality.—Having related the

complete incompatibility of two bases A and B to the
support uncertainty of the states ψ ∈ H, we now turn to its
link with the KD nonclassicality of those states. The
Kirkwood-Dirac (KD) distribution of a state ψ [41,42] is
the quasiprobability distribution

QðψÞij ¼ haijψihψ jbjihbjjaii; 1 ≤ i; j ≤ d; ð4Þ

similar in spirit to the Wigner distribution [43,44] in
continuous variable quantum mechanics. It is complex
valued and satisfies

P
ij QðψÞij ¼ 1, with marginals

P
j QðψÞij ¼ jhaijψij2,

P
i QðψÞij ¼ jhbjjψij2. A state

ψ ∈ H is KD classical if its KD distribution is real non-
negative everywhere so that its KD distribution is a
probability distribution. If not, it is KD nonclassical. A
measure for KD nonclassicality is provided by [14]
N NC ¼ P

ij jQijj; a state ψ is KD nonclassical if and only
if N NCðψÞ > 1. It follows that

1 ¼
����
X
ij

Qij

���� ≤ N NC ≤ MA;B

X
ij

jhaijψijjhbjjψij

≤ MA;B

�X
i∈Sψ

jhaijψij
��X

j∈Tψ

jhbjjψij
�

≤ MA;B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAðψÞnBðψÞ

p
: ð5Þ

This proves Eq. (2) and in addition it shows that any state
for which nAðψÞnBðψÞ ¼ M−2

A;B is KD classical. This is
illustrated in Fig. 1.
One finally observes in all panels of Fig. 1 that there are

no KD-classical states above the nonclassicality edge, by
which we mean the line segment in the first quadrant
defined by nA þ nB ¼ dþ 1. This is explained by the
following theorem.
Theorem 4.—Let A, B be orthonormal bases in a d-

dimensional Hilbert space H and suppose that haijbji ≠ 0

for all i; j ∈ ⟦1; d⟧. Then, if ψ ∈ H satisfies

nA;BðψÞ > dþ 1; ð6Þ

then ψ is KD nonclassical. Equivalently, if ψ is KD
classical then nA;BðψÞ ≤ dþ 1.
The proof of Theorem 4, which sharpens an argument in

Ref. [16], is given in the Supplemental Material [30].
Theorems 4 and 2 together imply
Corollary 5.—When two bases are COINC, all KD-

classical states ψ have minimal support uncertainty:
nA;BðψÞ ¼ nmin

A;B ¼ dþ 1.
This can be observed in Figs. 1(a) and 1(d). It is

nevertheless not true that all states with minimal support
uncertainty are KD classical, contrary to what happens
with conjugate continuous variables Q and P. Indeed, one
observes in Figs. 1(a) and 1(d) both KD-classical and
KD-nonclassical states on the nonclassicality edge. In other
words, when the bases are COINC, all states except
possibly some of those with minimal support uncertainty
are KD nonclassical so that complete incompatibility
guarantees the strong prevalence of nonclassicality.
Theorem 4 further explains why in Figs. 1(b) and 1(c),

which correspond to MUBs that are not COINC, there are
also no classical states above the nonclassicality edge.
Indeed, for MUBs the condition of the theorem is clearly
satisfied. In that case however, there may be both KD-
nonclassical and KD-classical states with support uncer-
tainty below dþ 1 as observed in Fig. 1(c). One observes
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the same phenomenon in Fig. 1(e) in spite of the fact the
theorem does not apply there. An extension of the result
that covers this and similar cases where zeroes appear in the
transition matrix U will be proven elsewhere [39]. The
importance of being able to deal with such zeroes was
pointed out in Ref. [11].
In Ref. [16], it was shown that, if none of the jaii are

equal (up to a phase) to any of the jbji, then the condition

nAðψÞ þ nBðψÞ > b3d=2c ð7Þ

implies ψ is KD nonclassical; here bxc is the integer part of
x. While this estimate holds under weaker conditions on the
overlaps haijbji than their nonvanishing, it is not optimal
when this condition is indeed satisfied and as soon as
d ≥ 4, since then b3d=2c > dþ 1; the difference between
the lower bounds is increasingly pronounced for larger d.
For example, for d ¼ 6 [see Fig. 1(b)], our optimal bound
shows that all states with nA;B ≥ 8 are KD nonclassical,
while Eq. (7) only implies this if nA;B ≥ 10.
Conclusion.—It has been observed recently that KD-

nonclassical states can furnish a quantum advantage. This
raises the question under what conditions on the observ-
ables used to define the KD distribution such KD non-
classicality prevails in Hilbert space? It was argued in
Ref. [16] that incompatiblity does not suffice for this. We
have established that complete incompatibility—a notion
we introduce—furnishes the right condition: it implies
only states with minimal support uncertainty can be KD
classical, all others being KD nonclassical. More generally,
our findings provide an improved understanding of the
fundamental notions of incompatibility of observables and
the related uncertainty in states as they arise in quantum
mechanics on finite dimensional Hilbert spaces. Further
work is needed to establish, beyond the prevalence of
nonclassical states, the strength of the nonclassicality they
provide and the quantitative impact this nonclassicality has
on the physical phenomena in which it plays a role.
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