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A paradigm shift in quantum thermometry is proposed. To date, thermometry has relied on local
estimation, which is useful to reduce statistical fluctuations once the temperature is very well known. In
order to estimate temperatures in cases where few measurement data or no substantial prior knowledge are
available, we build instead a method for global quantum thermometry. Based on scaling arguments, a mean
logarithmic error is shown here to be the correct figure of merit for thermometry. Its full minimization
provides an operational and optimal rule to postprocess measurements into a temperature reading, and it
establishes a global precision limit. We apply these results to the simulated outcomes of measurements on a
spin gas, finding that the local approach can lead to biased temperature estimates in cases where the global
estimator converges to the true temperature. The global framework thus enables a reliable approach to data
analysis in thermometry experiments.
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Quantum thermometry aims to improve precision stan-
dards for temperature sensing in the quantum regime [1–3].
It can inform the design of nanoscale probes [4,5], the
choice of measurement [6–9], and, as we shall see, the
postprocessing of measured data into an optimal temper-
ature reading. Precision thermometry is rooted in the old
problem of interpreting temperature fluctuations—in prac-
tice, temperature cannot be accessed directly but rather,
estimated from the statistics of observable properties
[10–14]. More generally, estimation theory allows one to
devise feasible strategies that can approach the fundamental
precision limits of thermometry. Improving thermometric
accuracy is not only relevant for quantum thermodynamics
[2], but also in any practical application in which precise
temperature control is necessary.
Strategies for temperature estimation may be classified as

follows. LetT denote a true but unknown temperature, and let
θ ∈ ½θ1; θ2� represent a hypothesis about the value of T.
Local estimation schemes assume that θ2=θ1 ∼ 1. If no such
a priorihypothesis is required, the scheme is said to be global
[15]. One readily sees that, if θ2=θ1 ∼ 1 and T ∈ ½θ1; θ2�,
then θ ∼ T. Consequently, local strategies allow one to
reduce statistical fluctuations once the temperature is well
known [18], but they cannot address the estimation of
unknown temperatures in full generality. Currently, most
literature on quantum thermometry focuses on local proto-
cols [1–9].
This is partly due to the widespread use of the Cramér–

Rao bound (CRB) [19,20] as the precision benchmark.
The standard CRB assumes unbiased estimators, i.e., that
the temperature estimates average to T, and it is exactly
saturable only for a special class of probability models—
the exponential family [18,21]. To accommodate a wider

model set, one can employ local unbiased estimators [22]
which are appropriate when the unknown temperature lies
initially on a very narrow interval [18]. More generally, the
CRB is approached using asymptotically large data sets
[21,23], which in turn reduces the estimation error down to
a regime in which local strategies become optimal. The
applicability of the CRB thus leads to schemes that are
useful only in a local sense, excluding cases where little is
known about the temperature a priori, or where only few
measurements can be performed. Furthermore, even if an
exact saturation of the CRB were possible, the bound often
depends explicitly on the unknown T [3]. In general, local
thermometry is thus far too restrictive.
This Letter puts forward a newmethod for global quantum

thermometry, that is, a method applicable to estimates based
on small data sets even if θ lies on a broad range. Here the
problem of global temperature estimation is formulated, and
fully solved, within the Bayesian framework [24–26]. We
achieve this by assigning a prior probability reflecting the
initial state of information about temperature, and identifying
an appropriate measure of uncertainty (an averaged “cost” or
“deviation”). The latter must also respect the scale invariance
of the problem, and turns out to be a type ofmean logarithmic
error. Equipped with this measure of uncertainty, we are able
to derive analytical expressions for the optimal temperature
estimator and its uncertainty, neither of which assume
statistical unbiasedness. Under certain conditions, local
thermometry is recovered as a special case of this global
formalism.
As a means of illustration, we apply the global method

to a noninteracting gas of n spin-1=2 particles. For this
example, local thermometry is found to be unable to
predict the true precision scaling when n ≲ 107 (with
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5% tolerance). Moreover, the estimator identified as opti-
mal in the local regime can in principle yield a much larger
uncertainty than its global counterpart. To demonstrate the
potential usefulness of the global approach in the analysis
of experimental data, we also simulate and postprocess
measurement outcomes for this n-spin gas. The global
estimator is then found to converge to the true temperature
after μ ≃ 102 trials. In contrast, a local analysis can lead to a
biased temperature estimate even for large μ. These results
show that a paradigm shift toward Bayesian techniques
may allow a more robust and significantly enhanced
optimization of thermometric protocols, especially in cases
where the data are limited [23,27,28].
Scale invariance and logarithmic error.—Consider a

system in equilibrium, where the true temperature T is well
defined but unknown. To infer it, one can perform energy
measurements, which return the value E, given T, accord-
ing to some conditional probability distribution. This plays
the role of a likelihood function [21,24], as it links the
measurement process with the unknown parameter. We
denote such function by pðEjθÞ, where we recall that θ is
our hypothesis for the true temperature T. Instead of
assuming that θ ∼ T, as local thermometry does, we
introduce a prior probability pðθÞ as a proxy for our initial
state of information about T. It is then instructive to adopt
the limit of complete ignorance, opposite to (and more
general than) local estimation.
Naively, one would represent complete ignorance as

pðθÞ ∝ 1. However, the conditional probability pðEjθÞ only
depends on θ through the dimensionless ratio E=ðkBθÞ, i.e.,

pðEjθÞdE ¼ f½E=ðkBθÞ�R
dÊf½Ê=ðkBθÞ�

dE ð1Þ

for some function f and where kB is Boltzmann’s constant.
This implies that we are dealing with a scale estimation
problem [24,25,29]. Given that T is, at this stage, completely
unknown, so is the scale of the problem. Consistency thus
demands our initial state of information to be invariant under
transformations E ↦ E0 ¼ γE and θ ↦ θ0 ¼ γθ [11,24],
where γ is a dimensionless constant. In turn, this means that
the prior probability must satisfy pðθÞdθ ¼ pðθ0Þdθ0, which
leads to the functional equation pðθÞ ¼ γpðγθÞwith solution
pðθÞ ∝ 1=θ [24,25]. Indeed, note that the problemcould have
been equivalently formulated in terms of the inverse temper-
ature β ¼ 1=kBθ. Such a choice should not alter our prior
knowledge, and yet, taking pðθÞ ∝ 1 gives pðβÞ ∝ 1=β2,
while pðθÞ ∝ 1=θ correctly leads to pðβÞ ∝ 1=β [11].
To map a measurement outcome E into a temperature, we

build a point estimator θ̃ðEÞ. Its quality is assessed via some
deviation functionD½θ̃ðEÞ; θ� gauging the deviation of θ̃ðEÞ
from θ. Since all the required information is contained in the
joint probability pðE; θÞ ¼ pðθÞpðEjθÞ ∝ pðEjθÞ=θ, we
write the average uncertainty of θ̃ðEÞ as

ϵ̄D ≔
Z

dEdθpðE; θÞD½θ̃ðEÞ; θ�: ð2Þ

The integration over θ accounts for all the available prior
information and makes Eq. (2) temperature independent.
This is a key feature that, unlike the local approach, leads to
well-posed optimization problems [24].
Our next step is to establish the form of the deviation

function D. Let the dimensionless scalar x ∈ ð−∞;∞Þ,
and let its prior probability be pðxÞ ∝ 1. As discussed,
e.g., in Ref. [24], this is a translationally invariant estima-
tion problem, for which a flat prior probability represents
complete ignorance. The deviation of x̃ðEÞ from x is
then naturally quantified by the k distance D½x̃ðEÞ; x� ¼
jx̃ðEÞ − xjk. Now we observe that setting x ¼ α logðkBθ=ε0Þ
maps this hypothetical scenario into our thermometry
problem, since pðxÞdx ¼ pðθÞdθ implies pðxÞ ∝ 1 ↦
pðθÞ ∝ 1=θ. Here, ε0 is an arbitrary constant with units
of energy included merely for dimension neutralization [30],
while α is a proportionality factor. Therefore,

D½x̃ðEÞ; x� ↦ D½θ̃ðEÞ; θ� ¼
����α log

�
θ̃ðEÞ
θ

�����
k
; ð3Þ

which is a bona fide scale parameter deviation function: it is
symmetric, i.e.,Dðθ̃; θÞ ¼ Dðθ; θ̃Þ; it respects the invariance
of the problem, that is, Dðγθ̃; γθÞ ¼ Dðθ̃; θÞ; it reaches its
absolute minimum at θ̃ ¼ θ where it vanishes; and it grows
(decreases) monotonically from (toward) that minimum
when θ̃ > θ (θ̃ < θ). While there may be other functions
compatible with these conditions, Eq. (3) is certainly a
suitable choice for thermometry. Below we further show that
for α ¼ 1 and k ¼ 2, the global framework can be reduced to
local thermometry assuming one does have prior (local)
information. For that reason, we will fix α ¼ 1 and k ¼ 2 in
the following, and after Eq. (3) is inserted in Eq. (2), we
arrive at

ϵ̄mle ¼
Z

dEdθpðE; θÞlog2
�
θ̃ðEÞ
θ

�
: ð4Þ

We call ϵ̄mle the mean logarithmic error.
Optimal global strategy.—Our goal is to find the temper-

ature estimator that is optimal with respect to Eq. (4). To do
this, we must minimize ϵ̄mle over all possible estimators.
Since ϵ̄mle is a functional of θ̃ðEÞ, i.e., ϵ̄mle ¼ ϵ½θ̃ðEÞ�, this is
achieved by solving the variational problem

δϵ½θ̃ðEÞ� ¼ δ

Z
dEL½θ̃ðEÞ; E� ¼ 0; ð5Þ

where L½θ̃ðEÞ; E� ≔ R
dθpðE; θÞlog2½θ̃ðEÞ=θ� plays the

role of a Lagrangian. We find that the optimal estimator
ϑ̃ðEÞ minimizing Eq. (4) is given by

kBϑ̃ðEÞ
ε0

¼ exp

�Z
dθpðθjEÞ log

�
kBθ
ε0

��
; ð6Þ
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where pðθjEÞ ¼ pðE; θÞ=pðEÞ is the posterior probability,
given by Bayes theorem, and pðEÞ ¼ R

dθpðE; θÞ [31].
Inserting the optimal estimator ϑ̃ðEÞ as θ̃ðEÞ in Eq. (4)
further gives the optimal logarithmic error ϵ̄opt. The latter
can be interpreted intuitively when split as

ϵ̄opt ¼ ϵ̄p −K; ð7Þ

where ϵ̄p ≔
R
dθpðθÞlog2ðϑ̃p=θÞ is the uncertainty prior to

any measurement, with optimal (prior) estimate
kBϑ̃p=ε0 ¼ exp½R dθpðθÞ log ðkBθ=ε0Þ�, and

K ≔
Z

dEpðEÞlog2
�
ϑ̃ðEÞ
ϑ̃p

�
ð8Þ

can be thought of as themaximal information providedby the
measurement E, on average. The calculations leading to
Eqs. (6) and (7) are given in the Supplemental Material [32].
Eqs. (6) and (7) constitute our main result. The former

gives an optimal estimator ϑ̃ðEÞ requiring no prior assump-
tions and directly applicable on a given dataset. Equation (7)
indicates the corresponding uncertainty ϵ̄opt. Since ϵ̄opt is a
true minimum, Eq. (7) also serves as a generalized precision
“bound” for temperature estimation [36]. Unlike the CRB
[3], this holds for any estimator, biased or unbiased. In
addition, these results, currently written for a single meas-
urement with outcome E, can be trivially adapted to account
for any number of repetitions, i.e., ðE1; E2;…Þ with iden-
tically and independently distributed statistics [27]. Global
thermometry is thus able to build temperature estimates
drawn from arbitrary data sets, including cases with
scarce data.
Recovery of local thermometry.—While, for the sake of

generality, T was initially assumed to be completely
unknown, one may insert a more localized prior probability
pðθÞ from Eq. (4) onward [37,38]. In that case, the
hypothesis θ will effectively lie in a narrow range, and
the estimator θ̃ðEÞ will be close to θ. One then has
log2½θ̃ðEÞ=θ� ≃ ½θ̃ðEÞ=θ − 1�2, so that Eq. (4) can be
approximated as

ϵ̄mle ≃
Z

dθpðθÞΔθ̃
2

θ2
; ð9Þ

where Δθ̃2 ≔
R
dEpðEjθÞ½θ̃ðEÞ − θ�2. Equation (9) is the

averaged noise-to-signal ratio Δθ̃2=θ2 weighted by the prior
probability [39]. Since Δθ̃2 is the “frequentist" mean square
error [18], it may be lower bounded as [21,24]

Δθ̃2⩾
1

FðθÞ
�
1þ ∂bðθÞ

∂θ
�
2

þ bðθÞ2; ð10Þ

where we have introduced the Fisher information

FðθÞ ¼
Z

dE
pðEjθÞ

�∂pðEjθÞ
∂θ

�
2

; ð11Þ

and the bias bðθÞ ≔ R
dEpðEjθÞ½θ̃ðEÞ − θ�. Provided that

bðθÞ ≃ 0 as is assumed in the local approach [18], we see that
Eqs. (9) and (10), and pðθÞ=θ2⩾0 lead to the Cramér–
Rao-like bound

ϵ̄mle ≳
Z

dθ
pðθÞ
θ2FðθÞ ≔ ϵ̄CR: ð12Þ

Equality would hold only inasmuch as the assumptions
underpinning Eq. (12) are fulfilled. Namely, bðθÞ ≃ 0 and
closeness of θ̃ðEÞ and θ, which makes ϵ̄CR a local quantifier
even when θ is integrated. Hence, we have derived a local
form of thermometry as a limit of the global framework.
Note that the quantifier ϵ̄ ¼ R

dθpðθÞFðθÞ−1 has been
proposed as an attempt to supersede the local paradigm
[41,42]. Notwithstanding its merits—Ref. [42] reports
results beyond standard local thermometry—such ϵ̄ is
not scale invariant. This might be ignored if the prior
probability is narrowly concentrated around some fixed θ0,
since then ϵ̄CR ≃ ½ðθ0Þ2Fðθ0Þ�−1 and ϵ̄ ≃ Fðθ0Þ−1. That is,
one is left in both cases with the Fisher information. But
this limiting assumption is unnecessary in our truly global
and intrinsically scale invariant approach.
Example: Noninteracting spin gas.—We now turn to

illustrate how to find the best thermometric precision one
could possibly get. Let us consider a gas of n noninteracting
spin-1=2 particles with energy gap ℏω in thermodynamic
equilibrium. This could correspond, e.g., to a dilute cloud
of impurities fully equilibrated with a cotrapped ultracold
majority gas, whose temperature needs to be measured
precisely [43–46]. The probability of measuring the total
energy E to be rℏω, with r ¼ 0; 1;…; n, is [12,47]

pðrjθÞ ¼
�
n

r

�
exp½−rℏω=ðkBθÞ�
Z½ℏω=ðkBθÞ�

; ð13Þ

where Z½ℏω=ðkBθÞ� ¼ fexp½−ℏω=ðkBθÞ� þ 1gn is the par-
tition function. Additionally, suppose that pðθÞ ∝ 1=θ is
defined, for instance, on the finite support kBθ=ðℏωÞ ∈
½0.1; 10�, so that normalization givespðθÞ ¼ 1=½2θ logð10Þ�.
The optimum ϵ̄opt can be readily evaluated after inserting

the prior probability pðθÞ and the likelihood [Eq. (13)] into
Eq. (7) [48]. The result, for n ranging from 10 to 105, is
shown in Fig. 1(a). The local limit of this error [cf.
Fig. 1(a)] is shown to take the form ϵ̄CR ≃ 51.7=n in the
Supplemental Material. Comparing both, we observe con-
vergence as n → ∞, confirming the emergence of local
thermometry within the global framework. However, for
finite n we see that ϵ̄CR > ϵ̄opt. That is, while the global
estimator extracts all available information for any n, a local
approach leads to information loss when n is small.
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To gain analytical insight into the scaling of ϵ̄opt with n,
first we note that, in this specific example, ϵ̄CR − ϵ̄opt ≃ bnq.
A numerical fit [49] renders the asymptotic expansion

ϵ̄opt ≃
51.7
n

−
143

n5=4
; ð14Þ

which, as shown in Fig. 1(a), matches the true optimum ϵ̄opt
when n ≳ 102. This in turn allows one to assess how large n
needs to be for the (local) ∼1=n scaling to hold approx-
imately. Consider the equation jϵ̄CR½nðτÞ� − ϵ̄opt½nðτÞ�j ¼
τϵ̄opt½nðτÞ� [38], where nðτÞ is the minimum number of spins
which drives the relative error between the optimal and
asymptotic curves below a tolerance τ. Using Eq. (14) gives
the condition nðτÞ≃58.5ð1þ1=τÞ4. As expected, nðτÞ→∞
when τ → 0. But, even when tolerating a 5% deviation, spin
numbers of n ∼ 107 are required for local thermometry to
give a correct scaling. Admittedly, the value of nðτÞ is
protocol dependent [23,38], but even a simple example

suffices to illustrate the perils of the local framework—
information loss [Fig. 1(a)] and failure to produce a valid
low-n scaling [Eq. (14)].
Data analysis in global thermometry.—The global frame-

work does not only enable a more comprehensive picture of
fundamental limits, but, perhaps more importantly, is also a
reliable tool for experimental data analysis. Consider the
following protocol: a gas of n spin-1=2 particles is prepared;
its energy rℏω is measured; both steps are repeated μ times,
generating the outcomes ðr1; r2;…; rμÞ ≔ r. The global
estimate ϑ̃ðrÞ in Eq. (6) is calculated using the posterior
pðθjrÞ ∝ pðrjθÞ=θ, with kBθ=ðℏωÞ ∈ ½0.1; 10�, pðrjθÞ ¼Qμ

i¼1 pðrijθÞ and pðrijθÞ given by Eq. (13). To assess its
uncertainty, the average over pðr; θÞ in Eq. (4) is instead
taken over pðθjrÞ, since, in experiments, the outcomes r are
known [24,26]. The resulting error ϵ̄mleðrÞ is obviously
outcome dependent, while being temperature independent
[50]. Recalling that the logarithmic error is a noise-to-signal
ratio, we introduce the Bayesian “error bar” Δθ̃ðrÞ ≔
θ̃ðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ̄mleðrÞ
p

. This analysis may be compared with the local
CRB-based estimator θ̃ðrÞL¼θ0þ½μFðθ0Þ�−1∂log½pðrjθ0Þ�=
∂θ, with error Δθ̃L ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μFðθ0Þ

p
[18,21]. Here, θ0 is an

initial “hint” at the true temperature T, a prerequisite in local
thermometry.
We simulated the outcomes r arising from the afore-

mentioned protocol, for a gas with n ¼ 150 spins and true
temperature kBT=ðℏωÞ ¼ 4. The local estimate θ̃L � Δθ̃L,
initialized with the “hint” kBθ0=ðℏωÞ ¼ 3, is shown in
Fig. 1(b) (dot-dashed black) to be biased even when μ ≫ 1.
This contrasts with the convergence of the global estimate
ϑ̃� Δϑ̃ (dotted blue) to the true temperature (solid red).
One could argue for a “two-step” method where a part of
the data is used to provide a better θ0 prior to applying local
thermometry. Yet, one cannot anticipate how many trials a
good seed θ0 requires, nor when such θ0 is sufficiently
close to the true temperature. The global framework is
instead general, reliable, and works at once. Further
evidence is provided in the Supplemental Material, where
a comparison between global thermometry and a histo-
gram-fitting procedure demonstrates the potential gain of
global techniques for experiments with limited data.
Conclusions.—We have demonstrated that local preci-

sion benchmarks are insufficient whenever few data or no
substantial prior knowledge are available. On the contrary,
a global approach is applicable to any temperature-
estimation protocol regardless of the measurement record
length, and can naturally account for any degree of prior
information. For instance, it would be interesting to exploit
Eq. (6) to postprocess data measured in the nanokelvin
regime, which is experimentally accessible with ultracold
Bose and Fermi gases [43,44,51–55] and relevant for quan-
tum simulation [56]. In addition, since Eq. (4) is deduced at
the level of probability distributions [i.e., with no explicit
consideration of the Born rule pðEjθÞ ¼ Tr½ΠðEÞρðθÞ�
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FIG. 1. (a) Log-log plot of the global optimum ϵ̄opt in Eq. (7)
(solid green) and local Cramér–Rao-like bound in Eq. (12) (dot-
dashed blue) for a gas of n noninteracting spin-1=2 particles in
thermal equilibrium. As can be seen, the global optimum is lower
than the local bound unless n → ∞, meaning that the local bound
misses information when n is “too small.” Eq. (14) gives
an asymptotic expansion matching the global optimum when
n≳ 102 (dashed purple). (b) Data analysis in global thermometry.
We simulated the outcomes r ¼ ðr1;…; rμÞ of μ energy mea-
surements on the n-spin gas, with n ¼ 150 and true temperature
(solid red) kBT=ðℏωÞ ¼ 4. We then postprocessed r using the
global estimator in Eq. (6) (dotted blue) and a local estimator
initialized at kBθ0=ðℏωÞ ¼ 3 [18,21] (dot-dashed black). The
global estimate converges to the true temperature after μ ≃ 102

shots. In contrast, the local method leads to a biased estimate even
for μ ≃ 500. The global error is calculated via Eq. (4) but with
average over the posterior pðθjrÞ (see Supplemental Material).
The standard CRB gives the local error [18,21].
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[57] ], Eq. (6) can be applied also to classical systems.
Finally, note that the key assumption behind Eq. (4) is that
the parameter is a scale, which makes it applicable beyond
temperature estimation (e.g., to estimate biochemical rates
in single-molecule experiments [58–61]).
From a fundamental perspective, combining Eq. (6)—

the rule to calculate optimal estimates—with the theoretical
optimum [Eq. (7)] provides a powerful tool to address open
problems in thermometry. These include pushing precision
limits further by optimizing over the energy spectrum of the
probe system [4,42], or over measured quantities beyond
energy (see Supplemental Material). Moreover, the global
formalism may be extended to accommodate for the non-
equilibrium states [8,62,63] resulting from limited access to
interacting thermalized probes, and gives the theoretical
support needed to derive more fundamental energy–
temperature uncertainty relations [64].
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[26] J. Rubio Jiménez, Non-asymptotic quantum metrology:
Extracting maximum information from limited data,
Ph.D. thesis, University of Sussex, 2020.

[27] J. Rubio and J. Dunningham, Bayesian multiparameter
quantum metrology with limited data, Phys. Rev. A 101,
032114 (2020).

[28] S. Morelli, A. Usui, E. Agudelo, and N. Friis, Bayesian
parameter estimation using Gaussian states and measure-
ments, Quantum Sci. Technol. 6, 025018 (2021).

[29] R. E. Kass and L. Wasserman, The selection of prior distri-
butions by formal rules, J. Am. Stat. Assoc. 91, 1343 (1996).

PHYSICAL REVIEW LETTERS 127, 190402 (2021)

190402-5

https://doi.org/10.1103/PhysRevA.82.011611
https://doi.org/10.1103/PhysRevA.82.011611
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1088/1751-8121/ab2828
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1103/PhysRevA.97.063619
https://doi.org/10.1103/PhysRevA.97.063619
https://doi.org/10.1088/1367-2630/17/5/055020
https://doi.org/10.1103/PhysRevA.96.062103
https://doi.org/10.22331/q-2019-07-09-161
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.1103/PhysRevLett.125.080402
https://doi.org/10.1119/1.13583
https://doi.org/10.1119/1.17410
https://doi.org/10.1103/PhysRevE.83.011109
https://doi.org/10.1119/1.3563046
https://doi.org/10.1007/s10955-013-0867-9
https://doi.org/10.1007/s10955-013-0867-9
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1088/1367-2630/aa7fac
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1111/j.2517-6161.1964.tb00537.x
https://doi.org/10.1111/j.2517-6161.1964.tb00537.x
https://doi.org/10.1088/1367-2630/ab098b
https://doi.org/10.1103/RevModPhys.83.943
https://doi.org/10.1103/RevModPhys.83.943
https://doi.org/10.1103/PhysRevA.101.032114
https://doi.org/10.1103/PhysRevA.101.032114
https://doi.org/10.1088/2058-9565/abd83d
https://doi.org/10.1080/01621459.1996.10477003


[30] C. F. Matta, L. Massa, A. V. Gubskaya, and E. Knoll, Can
one take the logarithm or the sine of a dimensioned quantity
or a unit? Dimensional analysis involving transcendental
functions, J. Chem. Educ. 88, 67 (2011).

[31] Note that Eq. (6) is independent of the specific value of
kB=ε0.

[32] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.190402 for further
details on the derivations, simulations and examples in the
main text, which includes Refs. [33–35].

[33] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical
Methods for Physics and Engineering (Cambridge Univer-
sity Press, Cambridge, England, 2004).

[34] R. K. Pathria, Statistical Mechanics, 3rd ed. (Elsevier,
Amsterdam, 2011).

[35] M. Hohmann, F. Kindermann, T. Lausch, D. Mayer, F.
Schmidt, and A. Widera, Single-atom thermometer for
ultracold gases, Phys. Rev. A 93, 043607 (2016).

[36] An analogous result exists for multi-phase estimation [27].
[37] R. Demkowicz-Dobrzański, Optimal phase estimation with

arbitrary a priori knowledge, Phys. Rev. A 83, 061802(R)
(2011).

[38] J. Rubio, P. A.Knott, and J. A.Dunningham,Non-asymptotic
analysis of quantummetrology protocols beyond the Cramér-
Rao bound, J. Phys. Commun. 2, 015027 (2018).

[39] Interestingly, log2½θ̃ðEÞ=θ� and ½θ̃ðEÞ − θ�2=θ2, which give
rise to Eqs. (4) and (9), respectively, have been previously
considered as independent choices with different properties
[40]. Instead, here we derive Eq. (4) by imposing physically
motivated constraints, while Eq. (9) appears as a local
limiting case. Hence, we may regard the former as more
fundamental.

[40] J. G. Norstrom, The use of precautionary loss functions in
risk analysis, IEEE Trans. Reliab. 45, 400 (1996).

[41] M. E. Pearce, E. T. Campbell, and P. Kok, Optimal quantum
metrology of distant black bodies, Quantum 1, 21 (2017).

[42] W.-K. Mok, K. Bharti, L.-C. Kwek, and A. Bayat, Optimal
probes for global quantum thermometry, Commun. Phys. 4, 1
(2021).

[43] Q.Bouton, J.Nettersheim,D.Adam, F. Schmidt, D.Mayer, T.
Lausch, E. Tiemann, and A. Widera, Single-Atom Quantum
Probes for Ultracold Gases Boosted by Nonequilibrium Spin
Dynamics, Phys. Rev. X 10, 011018 (2020).

[44] R. Olf, F. Fang, G. E. Marti, A. MacRae, and D. M.
Stamper-Kurn, Thermometry and cooling of a Bose gas
to 0.02 times the condensation temperature, Nat. Phys. 11,
720 (2015).

[45] M. Mehboudi, A. Lampo, C. Charalambous, L. A. Correa,
M. A. García-March, and M. Lewenstein, Using Polarons for
sub-nK Quantum Nondemolition Thermometry in a Bose-
Einstein Condensate, Phys. Rev. Lett. 122, 030403 (2019).

[46] M. T. Mitchison, T. Fogarty, G. Guarnieri, S. Campbell, T.
Busch, and J. Goold, In Situ Thermometry of a Cold Fermi
Gas via Dephasing Impurities, Phys. Rev. Lett. 125, 080402
(2020).

[47] G. A. P. Wyllie, Elementary Statistical Mechanics
(Hutchinson, London, 1970).

[48] Numerical algorithms on GitHub https://github.com/jesus-
rubiojimenez/QuThermometry-global (2020).

[49] Specifically, a Bayesian fit using log½ϵ̄crðnÞ − ϵ̄optðnÞ� ¼
q logðnÞ þ logðbÞ þ eðnÞ, with Gaussian errors eðnÞ.

[50] In the Supplemental Material we prove that Eq. (6) is
optimal also with respect to ϵ̄mleðrÞ.

[51] J. Javanainen and J. Ruostekoski, Off-resonance light
scattering from low-temperature Bose and Fermi gases,
Phys. Rev. A 52, 3033 (1995).

[52] A. Leanhardt, T. Pasquini, M. Saba, A. Schirotzek, Y. Shin,
D. Kielpinski, D. Pritchard, and W. Ketterle, Cooling Bose-
Einstein condensates below 500 picokelvin, Science 301,
1513 (2003).

[53] J. Ruostekoski, C. J. Foot, and A. B. Deb, Light Scattering
for Thermometry of Fermionic Atoms in an Optical Lattice,
Phys. Rev. Lett. 103, 170404 (2009).

[54] R. Onofrio, Cooling and thermometry of atomic Fermi
gases, Phys. Usp. 59, 1129 (2016).
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