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The origin(s) of the ubiquity of probability distribution functions with power law tails is still a matter of
fascination and investigation in many scientific fields from linguistic, social, economic, computer sciences
to essentially all natural sciences. In parallel, self-excited dynamics is a prevalent characteristic of many
systems, from the physics of shot noise and intermittent processes, to seismicity, financial and social
systems. Motivated by activation processes of the Arrhenius form, we bring the two threads together by
introducing a general class of nonlinear self-excited point processes with fast-accelerating intensities as a
function of “tension.” Solving the corresponding master equations, we find that a wide class of such
nonlinear Hawkes processes have the probability distribution functions of their intensities described by a
power law on the condition that (i) the intensity is a fast-accelerating function of tension, (ii) the distribution
of marks is two sided with nonpositive mean, and (iii) it has fast-decaying tails. In particular, Zipf’s scaling
is obtained in the limit where the average mark is vanishing. This unearths a novel mechanism for power
laws including Zipf’s law, providing a new understanding of their ubiquity.
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Introduction.—Many different types of data in the
natural and social sciences exhibit power law density
distributions of the size or frequencies of their characteristic
variables. Namely, the probability density function (PDF)
PðSÞ of a variable S is given by PðSÞ ∼ 1=S1þα for large S
values, with α > 0. Many mechanisms have been proposed
to rationalize it [1–4], such as proportional growth with
additional conditions [5], family transformation of the
Bose-Einstein distribution [6], least-effort principles [7],
optimization between efficiency and faithfulness of self-
reproduction [8] and so on.
Self-excited point processes assume that past events

strongly influence the occurrence of future events. The
Hawkes process [9] is the simplest such process, where the
intensity (probability per unit time that a new event occurs)
is linear in the sum of the triggering influence of all past
events. In the last decade, the Hawkes process and
generalizations have enjoyed an explosive growth in the
investigation of their properties and in a large set of
applications in all fields of knowledge [10–13].

Theoretically challenging, nonlinear self-excited proc-
esses have been scarcely investigated [14,15] except for a
few special cases [16], even if they are a priori more suited
to represent the interplay between stochasticity and non-
linear dynamics in many complex systems. Here, we study
a class of nonlinear Hawkes processes characterized by
fast-accelerating intensities as a function of an auxiliary
field called the “tension,” and report the first explicit
solution that is applicable to a wide class of nonlinear
Hawkes processes. We find that this class of nonlinear
Hawkes family universally exhibits intensity distributions
with power law tails. In particular, Zipf’s scaling naturally
appears when the distribution of marks is symmetric. A
weaker condition is that the average mark is vanishing.
These models are motivated by activation processes of the
Arrhenius form, which are relevant in many applications in
physics and also in seismicity and finance modeling as
explained below.
Model.—The key ingredients of the nonlinear self-

exciting Hawkes process considered here are the intensity
λðtÞ and tension νðtÞ. Let us introduce a time series ftigi,
representing the time stamps of events, such as earth-
quakes, retweets on Twitter, or neural discharges in a brain.
The intensity λðtÞ fully characterizes the statistics of
occurrence of events, such that an event occurs with
probability λðtÞdt during the interval ½t; tþ dtÞ. We assume
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that the intensity is a nonlinear positive and monotonically
increasing function of the system tension νðtÞ,

λðtÞ ¼ g½νðtÞ�; ð1Þ
where gðνÞ is called the tension-intensity map. The tension
νðtÞ quantifies the total stress due to historical events, such
as resulting from elastic deformations of the crust induced
by earthquakes. In finance, λðtÞ can represent the rate of
volatility jumps and νðtÞ is the rate of financial returns
whose amplitude exceeds some threshold. The tension at a
given time is obtained as the sum of perturbations over all
past events [see Fig. 1(a) for a realization], such that

νðtÞ ¼
XNðtÞ

i¼1

yihðt − tiÞ; ð2Þ

where each event i has a mark yi distributed according to
the PDF ρðyÞ andNðtÞ is the number of events during ½0; tÞ.
Combining the relation (1) between tension and intensity
and (2), we obtain a nonlinear version of the Hawkes

process: λðtÞ ¼ g½PNðtÞ
i¼1 yihðt − tiÞ�. To represent that high

tension promotes future events, we assume that the tension-
intensity map is a nondecreasing function. For an affine
function gðνÞ ¼ ν0 þ ν, the model (1) with (2) reduces to
the original linear Hawkes process and yi can be interpreted
as the average number of events of first generation triggered
by event i and is thus called the fertility of event i, by
imposing

R
∞
0 hðtÞdt ¼ 1. The memory function hðtÞ ≥ 0

controls the distribution in time of the triggered events and
decays to zero for large t.
Conditions.—There is a large variety of nonlinear

Hawkes processes defined via the pair of functions gðνÞ
and ρðyÞ. Here, we focus on the wide class of nonlinear
Hawkes processes that obey the three following conditions:
(i) the tension-intensity map gðνÞ is a fast-accelerating
intensity, defined to diverge faster than any second-order

polynomial: gðνÞ > Oðν2Þ for large ν; (ii) the mark dis-
tribution is two sided with nonpositive mean, such thatR
0
−∞ ρðyÞdy≠ 0,

R∞
0 ρðyÞdy≠ 0, and m≔

R∞
−∞ yρðyÞdy≤ 0;

and (iii) the mark distribution has fast-decaying tails, such
that ΦðxÞ ≔ R

∞
−∞ dyρðyÞðexy − 1Þ exists. ΦðxÞ ¼ 0 has

only two roots, where one is zero and the other is c� ≥ 0.
Here, the Bachmann-Landau-like inequality notation

aðxÞ > O½bðxÞ� means limx→∞aðxÞ=bðxÞ ¼ ∞. Also, the
condition (iii) essentially means that fat-tail mark distri-
butions, such as power law distributions, are out of scope in
this Letter. Remarkably, all nonlinear Hawkes processes
satisfying these three conditions have their steady-state
intensity PDFs obeying the universal power law scaling, as
we show below. Typical analytical forms satisfying con-
dition (i) include gðνÞ ∝ νn with n > 2 and

gðνÞ ¼ λ0eβν; ð3Þ

which is motivated by the physics of rupture [22] and
earthquakes [23,24], modeled as activated processes fol-
lowing an Arrhenius law. Indeed, we assume that the
tension ν is proportional to the seismic energy E (itself
proportional to the total mechanical stress in the Earth
crust), and let us assume that an earthquake happens if the
system’s state jumps over an energy barrier E0 from a
metastable state to another. According to the Arrhenius law,
the escape rate is proportional to e−βðE0−EÞ ∝ eβν with a
disordered-enhanced effective inverse temperature ∼β [22],
consistently with Eq. (3). This exponential dependence (3)
also encompasses the class of multifractal processes
emerging from the interplay between exponential activation
and long memory [25], which have been shown to be
relevant to model financial volatility [26]. By construction,
the tension is dependent on all the marks of previous
events, while future marks are drawn independently of the
past history. This is consistent with the empirical unpre-
dictability of earthquake magnitudes.

(a) (b) (c)

FIG. 1. (a) Sample tension trajectory fνðtÞgt and (b) the corresponding intensity trajectory fλðtÞgt generated by the nonlinear Hawkes
process (1) with (2). The tension trajectory fνðtÞgt exhibits random jumps with size yi distributed according to ρðyÞ and the
corresponding intensity λ is given by λðtÞ ¼ gðνðtÞÞ. (c) Steady intensity distribution PSSðλÞ for the exponential fast-accelerating
intensity gðνÞ ∝ eβν in the case where the mean mark is zero: m ¼ 0, exhibiting Zipf’s law ∝ λ−2. These figures are based on
Monte Carlo simulations of the nonlinear Hawkes process with λ ¼ gðνÞ ¼ λ0eβν, hðtÞ ¼ P

K
k¼1 h̃ke

−t=τk , and ρðyÞ ¼
ð1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
Þe−y2=ð2σ2Þ with K ¼ 3, ðτ1; τ2; τ3Þ ¼ ð1; 0.5; 2Þ, ðh̃1; h̃2; h̃3Þ ¼ ð0.5; 0.6; 0.1Þ, λ0 ¼ 1, β ¼ 5, and σ ¼ 0.1 (see Supplemental

Material [17] for the detailed numerical scheme).
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Condition (ii) guarantees the stationarity of the model as
a result of the cumulative contribution of the negative
marks yi < 0, which prevent ν from diverging. An event
with a negative (positive) mark yi is likely to inhibit
(induce) future events. The coexistence of events that
inhibit and of events that promote future activity in our
nonlinear Hawkes model is a fundamental extension to the
general class of Hawkes processes. This allows us to
realistically account for a ubiquitous inhibitory effect in
real complex systems, such as the random mechanical
stress relaxation after earthquake in seismology, or inhibi-
tory synaptic potentials in neural networks. Note that, in
contrast, the standard Hawkes process and many other
versions only have positive marks, corresponding to taking
into account excitations exclusively.
Power law intensity PDF.—When conditions (i)–(iii) are

satisfied, the steady-state PDF of the intensity λ is analyti-
cally given by

PSSðλÞ ∝ λ−1
�
e−aν

�
dg
dν

�
−1
�
ν¼g−1ðλÞ

; a≔
c�

hð0Þ ; ð4Þ

with c� being the nonnegative root of Φðc�Þ ¼ 0 [see
Supplemental Material (SM) [17] ]. This formula readily
reduces to various power law asymptotic forms, such as

PSSðλÞ∝
�
λ−2−β

−1a ½for gðνÞ≃ λ0eβν;β> 0�;
λ−2þ1

ne−aðλ=λ0Þ1=n ½for gðνÞ≃ λ0ν
n;n > 2�:

ð5Þ

Beyond conditions (i)–(iii), no other properties or details,
including the shape of the memory function, change the
robust classes given by expressions (5).
Zipf’s law.—Result (5) implies that Zipf’s scaling

appears as an important subclass of the nonlinear
Hawkes processes as a special case a ¼ 0:

PSSðλÞ ∝
�
λ−2 ðfor gðνÞ > OðνnÞ for any nÞ
λ−2þ1

n ðfor gðνÞ ≃ λ0ν
n; n > 2Þ;

ð6Þ

except for minor logarithmic corrections. The condition
a ¼ 0 is realized exactly when c� ¼ 0, which holds for
zero-mean mark m ¼ 0, implying a ¼ c�=hð0Þ ¼ 0. This
is for instance realized for symmetric mark distribution
ρðyÞ ¼ ρð−yÞ. Approximate Zipf’s distributions are
obtained when a ¼ c�=hð0Þ is small, which occurs for
large hð0Þ.
Symmetric mark distributions are realized in the physics

of earthquakes as discussed in [24]. Indeed, the stress
perturbations induced by a (small) earthquake correspond
to the stress field of a double couple, which can be simply
represented by a concentrated set of four forces of the same
norm, summing to zero (zero total force) and with total
torque also equal to zero. A large earthquake is just a set
of double-couple sources placed along its fault surface.

The stress induced by a double couple has a nice butterfly
symmetry with four lobes, two positive and two negative
ones, and is perfectly symmetric. With the correspondence
that the tension ν is proportional to stress, and is given by
(2), and that the exponential intensity function (3) derives
from the physics of earthquake nucleation with Arrhenius
law with an effective temperature [24], this justifies the
symmetric property of the distribution of marks for
earthquakes.
The results of numerical simulations for m ¼ 0 (zero-

mean marks) are presented in Fig. 1. Panel (a) shows a
typical realization of ν for case (3), while panel (b) shows
the derived temporal evolution of λ. Panel (c) shows the
corresponding steady-state PDF of λ obeying Zipf’s law
(see also SM [17] for numerical simulations for the
negative-mean cases m < 0).
Field-master equation.—Our general result for a large

class of memory functions can be derived using our
recently introduced field-master-equation framework
[27,28] [see also Supplemental Material (SM) [17] for
the technical detail]. The main idea is to convert the original
low-dimensional non-Markovian stochastic process onto a
high-dimensional Markovian field dynamics. This tech-
nique is called Markov embedding and has been applied for
some special cases, such as memory functions composed of
discrete sums of exponentials (see Refs. [29,30] for the
generalized Langevin equation and Refs. [31,32] for
Hawkes processes).
The Markov embedding scheme can be formulated for

the nonlinear Hawkes process (1) with (2) as follows. Let us
decompose the memory kernel hðtÞ as a continuous sum of
exponentials. This amounts to representing hðtÞ as a
Laplace-like transform of another function h̃ðxÞ of the
auxiliary variable x ∈ ð0;∞Þ:

hðtÞ ¼
Z

∞

0

dxh̃ðxÞe−t=x: ð7Þ

Based on this decomposition, the original process (1) with
(2) is equivalent to a Markovian stochastic partial differ-
ential equation (SPDE) for the excess tension fzðt; xÞgx∈Rþ

∂zðt; xÞ
∂t ¼ −

zðt; xÞ
x

þ h̃ðxÞξPρðyÞ;λðtÞ ð8Þ

with the total tension νðtÞ ¼ R
∞
0 dxzðt; xÞ [see Figs. 2(a)

and 2(b) for schematics of the Markov embedding
scheme] and the compound Poisson noise ξPρðyÞ;λðtÞ ¼PNðtÞ

i¼1 yiδðt − tiÞ. Remarkably, while the original process
is non-Markovian in a one-dimensional space νðtÞ, the field
dynamics is Markovian in the infinite-dimensional
space fzðt; xÞgx∈Rþ .
The equivalence between the original nonlinear Hawkes

process (1) with (2) and the SPDE (8) can be shown as
follows: the formal solution of the SPDE (8) is given by

zðt;xÞ¼R t
−∞h̃ðxÞe−ðt−sÞ=xξPρðyÞ;λðsÞds¼

PNðtÞ
i¼1 h̃ðxÞyie−ðt−tiÞ=x.
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The total tension is then given by νðtÞ ≔ R
∞
0 dxzðt; xÞ ¼PNðtÞ

i¼1 yi
R
∞
0 dxh̃ðxÞe−ðt−tiÞ=x ¼ PNðtÞ

i¼1 yihðt − tiÞ. This is
equivalent to (2). We thus find that the Markovian
SPDE (8) is a correct representation after Markov
embedding.
The SPDE (8) can be regarded as the “physical dynam-

ics” of the field variable fzðt; xÞgx∈Rþ , since x can be
considered as the “physical position” in Rþ ≔ ð0;∞Þ on
which the field is evaluated. This interpretation has the
advantage that the functional methods for various SPDEs of
stochastic field dynamics are available for advanced ana-
lytics (e.g., the functional Fokker-Planck equations for the
reaction-diffusion equations [33]).
Since the SPDE (8) is Markovian, we can obtain the

corresponding master equation. By introducing the prob-
ability density functional (PDF) Pt½z� ≔ Pt½fzðt; xÞgRþ�,
the field-master equation is given by

∂Pt½z�
∂t ¼ ðLA þ LJÞPt½z� ð9Þ

with the advective and jump Liouville operatorsLA and LJ,
respectively, defined by

LAPt ≔
Z

∞

0

dx
δ

δzðxÞ
zðxÞ
x

Pt½z�; ð10aÞ

LJPt≔
Z

∞

−∞
dyρðyÞG½z−yh̃�Pt½z−yh̃�−G½z�Pt½z�; ð10bÞ

with G½z� ≔ g½R∞
0 zðt; xÞdx� and ρðyÞ is the mark

distribution.
Note that Pt½z� is a path probability measure: the

probability is given by Pt½z�Dz that the configuration of
the field variable is nearly equal to fzðt; xÞgRþ , whereDz ≔Q

x∈Rþ dzðxÞ is the path-integral volume element. In
addition, the ensemble average hAi is given by the path

integral hAi ≔ R
APt½z�Dz. Technically, the field-master

equation (9) should be interpreted as a formal limit from
discrete underlying descriptions according to the standard
convention (see Ref. [33] and SM [17]). The steady-state
solution PSS½z� is related to the steady-state intensity PDF
PSSðλÞ as PSSðλÞ ¼

R
Dzδðλ − R

∞
0 dxzðt; xÞÞPSS½z�.

Derivation.—We now provide an outline of the theo-
retical derivation of the solution of the field-master equa-
tion (see SM [17] for more detailed calculations and an
illustrative-case study with the exponential memory). Let
us introduce ϕ½z� ≔ G½z�PSS½z� to rewrite Eq. (9) in the
steady state as

0 ¼
Z

∞

0

dx
δ

δz

�
zϕ½z�
xG½z�

�
þ
Z

∞

−∞
dyρðyÞϕ½z − yh̃� − ϕ½z�:

ð11Þ
Since the first term is negligible for large z assuming the
condition (i), the asymptotic solution satisfies

Z
∞

−∞
dyρðyÞϕ½z − yh̃� − ϕ½z� ≈ 0 for large z: ð12Þ

Under conditions (ii) and (iii), its solution is given by
ϕ½z� ≈ C0½Z0�e−c�W with W ≔ zðx�Þ=hðx�Þ and Z0ðxÞ ≔
zðxÞ − hðxÞzðx�Þ=hðx�Þ for R0þ ≔ Rþnfx�g by selecting
an appropriate number x� ∈ R. Here, C0 is an arbitrary
functional without W as an argument. After a path integral
for marginalization, we obtain

PSSðνÞ ≔
Z

DzPSS½z�δ
�
ν −

Z
∞

0

dxzðxÞ
�
≈
e−c

�ν=hð0Þ

gðνÞ :

ð13Þ
Equation (4) then follows by the change of variable ν → λ.
Intuition.—Let us consider the case of an exponential

growing intensity (3) and a simple exponential memory

FIG. 2. (a),(b) Schematic of the Markov embedding from the one-dimensional non-Markovian process νðtÞ to the infinite-dimensional
Markovian field dynamics fzðt; xÞgx∈Rþ . The original process (a) is non-Markovian because its time evolution (1) with (2) depends on
all the history fνðsÞgs≤t. On the other hand, the field dynamics (b) is Markovian because its time evolution (8) depends only on the
current configuration of the field variable fzðt; xÞgx∈Rþ . Note that the auxiliary field variable x ∈ Rþ is introduced according to Eqs. (7)
and (8) and is interpreted as a “position” at which the field is evaluated. The decay speed is faster for smaller x, while it is slower for
larger x according to Eq. (8). (c) Statistics for the number of events Ntwin occurring in short time windows of size twin in the diffusive
scaling limit (14) for various ϵ. We observe a Zipf law up to the upper cutoff Ncut ¼ Oðϵ2Þ. Beyond the cutoff, a fatter tail is numerically
observed (see SM [17]).
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kernel hðtÞ ¼ ðn=τÞe−t=τ, where the integral of the memory,
n ¼ R∞

0 hðtÞdt > 0, would be interpreted as the branching
ratio in the linear case. Suppose that the initial tension is
zero and thus the initial intensity is λ0. Naively, one could
infer that the typical waiting time till the next event, the
expected event interval (EEI), is given by ð1=λ0Þ. Choosing
the parameters such that τ ≪ ð1=λ0Þ would imply that the
influence of an event in triggering future events is
extremely localized temporally and one should expect no
intermittency, no power laws and a rather trivial behavior.
This reasoning is wrong as it neglects the nonlinear nature
of the model with strong feedback loops. Indeed, defining
the small parameter η ≔ λ0τ ≪ 1, after one event occurs
with positive mark y > 0, the intensity is given instanta-
neously by λðtÞ ¼ λ0eβλ0yn=η and the corresponding EEI is
of the order of ½1=λðtÞ� ¼ ð1=λ0Þe−βλ0yn=η. Paradoxically, as
the memory τ of the event is vanishingly smaller than the
naive characteristic timescale ð1=λ0Þ, the time needed for
the next event to be triggered becomes exceedingly smaller,
since ð1=λ0Þe−βλ0yn=η ≪ τ ≪ ð1=λ0Þ for sufficiently small η
such that η lnð1=ηÞ ≪ βλ0yn. Hence, in contradiction with
the naive view, a very short memory enhances triggering
and creates a very rich bursty dynamics of events. Readily
generalized to multiple events, this reasoning gives an
intuition on the basic source of the scale-free nature of the
power law intensity PDF (5), suggesting the absence of
both characteristic intensity and EEI.
Number-of-events statistics.—The intensity PDF is a

fundamental quantity to characterize temporal properties
of point processes and allows one to derive various other
quantities. One such variable that is directly observable is
the total number of events Ntwin occurring in a finite time
window twin. Assuming symmetric mark distributions
ρðyÞ ¼ ρð−yÞ, we show that Zipf’s law also holds for
the distribution of Ntwin . For simplicity, we consider the
diffusive scaling limit (i.e., essentially equivalent to the
system-size expansion [33], an established perturbative
method invented by van Kampen [34] based on realistic
scaling assumptions; see SM for a brief review) by
introducing a small parameter ϵ:

gðνÞ ¼ 1

ϵ2
ḡðνÞ; ρðyÞ ¼ 1

ϵ
ρ̄

�
y
ϵ

�
ð14Þ

with ϵ-independent functions ḡ and ρ̄. We focus on the case
with ḡðνÞ ¼ λ0eβν. In this diffusive limit, corresponding to
the mark size being typically much smaller in absolute
value than the tension at any given time, the statistics of
Ntwin obeys Zipf’s law for a sufficiently short time window
twin [see Fig. 2(c)]:

PSSðNtwinÞ ∝ N−2
twin for Ntwin < Ncut ð15Þ

as an intermediate asymptotics [35] with upper cut-
off Ncut ¼ Oðϵ−2Þ.

This relation can be derived from a superposition of
Poisson statistics. Let us consider a long time series in
½0; TÞ and then randomly select a time point τ ∈ ½0; TÞ. For
a sufficiently short time window ½τ; τ þ twinÞ, we can
assume that λðtÞ is constant and the number of events
obeys the Poisson statistics PðNtwin jλÞ ¼ ðλtwinÞNtwine−λtwin=
Ntwin!. Choosing τ randomly and neglecting dependences
between count numbers across different windows, the
unconditional distribution is given by the superposition
of the Poisson distribution as

PSSðNtwinÞ ≃
Z

PðNtwin jλÞPSSðλÞdλ ∝ N−2
twin : ð16Þ

This example shows that Zipf’s law (6) for the intensity
PDF PSSðλÞ is directly relevant to Zipf’s laws for other
observable quantities.
Theoretically, relation (15) is expected to hold only up to

the cutoff Ncut (see SM [17]), which diverges as ϵ → 0,
guaranteeing the robust universality of Zipf’s law for
PSSðNtwinÞ in the diffusive limit. Beyond the cutoff, we
numerically observe a fatter tail stemming from depend-
ences between count numbers in adjacent time windows,
which becomes dominant at very high count numbers, as
can be seen from its impact on ν given by (2).
Conclusion.—As power laws are widely observed in

many complex systems, our theoretical finding suggests the
nonlinear self-excited mechanism as an explanation for the
universality of power laws. Intuitively, these properties
emerge from the intricate interplay between a kind of
multiplicative process, memory and endogeneity or reflex-
ity. Our new tools and results will be useful for data
analysis of real complex systems. Interested readers are
referred to Ref. [36] for more mathematical details.
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