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We present a theory of active, permeating, polar gels, based on a two-fluid model. An active relative
force between the gel components creates a steady-state current. We analyze its stability, while considering
two polar coupling terms to the relative current: a permeation-deformation term, which describes network
deformation by the solvent flow, and a permeation-alignment term, which describes the alignment of the
polarization field by the network deformation and flow. Novel instability mechanisms emerge at finite wave
vectors, suggesting the formation of periodic domains and mesophases. Our results can be used to
determine the physical conditions required for various types of multicellular migration across tissues.
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Introduction.—Active materials are driven out of equi-
librium by a constant consumption of energy at the
microscopic level, which is converted into forces and
motion [1]. These include, among others, biological objects
on different scales, ranging from active motors, to living
cells, and even groups of animals. A useful framework for
the study of active matter is hydrodynamics. Similarly to
continuum theories of liquid crystals [2], it describes
macroscopic physical properties and flows, relying on
conservation laws and symmetries. It also provides an
efficient language to distinguish between active materials,
based on their composition, orientational order, and rheo-
logical properties.
The biological motivation to our physical theory is

multicellular migration. Connective tissues are made of
cells in a complex extracellular environment, which often
has a viscoelastic behavior [3]. Cells may migrate collec-
tively in tissues in a fluidlike manner [4]. We propose that
the tissue can be regarded, therefore, as an active, per-
meating, gel with the cells acting as a solvent. We further
focus on a polar solvent, relevant to cells with spindlelike
shapes or a defined direction. While active, permeating,
polar gels have been studied in other contexts in the past
[5–9], these studies remain at a general level, without
interpreting the new Onsager transport coefficients of the
theory, or clarifying the nature of the interaction between
the two gel components.
Our new theory is formulated in a systematic way as a

two-fluid model. It identifies the internal forces of each
component and the interaction forces between components,
which orient the solvent (“permeation alignment”) and
deform the network (“permeation deformation”). These
mechanisms drive novel, finite-wavelength instabilities,
unique to active, permeating polar gels. Our theory opens

an avenue to study interactions between cells and their
environment during multicellular migration.
Theory.—We consider a two-component gel, composed

of an active, polar solvent (s) and a viscoelastic network
(n). The polarization field is given by the unit vector p. The
network configuration is described by the left Cauchy-
Green strain tensor B ¼ EET, where E is the deformation
gradient tensor. We consider the network component to be
viscoelastic; elastic at short times and flowing at long times.
It has a volume fraction ϕ and the solvent 1 − ϕ. The gel is
assumed to be incompressible.
The free energy of the gel can be decomposed into

F ¼ R
drðfp þ fB þ fBp þ fϕÞ, where fp is the polariza-

tion free-energy density, fB is the elastic free-energy
density, fBp is a strain-polarization coupling term, and
fϕ is the mixing free-energy density. The polarization
contribution is given by

fp ¼ ð1 − ϕÞ2
�
1

2
Kð∇pÞ2 þ Kd∇ · p

�
−
1

2
hkp2: ð1Þ

It accounts for distortions of the polarization field around a
fully polarized state [10,11]. In Eq. (1), K is the Frank
constant in the single-constant approximation and Kd is a
polar splay coefficient, while hk is a Lagrange multiplier to
ensure that p2 ¼ 1. The polar splay term, ð1 − ϕÞ2Kd∇ · p,
is the only polar term in the free energy. It plays an
important role in our theory because of its coupling to the
concentration; otherwise, it reduces to a boundary term.
The coupling is considered to scale as ð1 − ϕÞ2, because the
free energy originates from solvent-solvent interaction.
The gel is active. It is constantly driven out of equilib-

rium by the input of a fixed energy-density, Δμ that
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corresponds, for example, to the chemical-potential differ-
ence between adenosine triphosphate and its hydrolysis
products [12,13].
We describe the dynamics of the concentration,

polarization, and strain within a hydrodynamic framework.
The network moves with a velocity vn and the solvent
with a velocity vs, corresponding to a center-of-mass
velocity, v ¼ ϕvn þ ð1 − ϕÞvs, and a relative current,
J ¼ ϕð1 − ϕÞðvn − vsÞ. We have assumed, for simplicity,
the same specific mass for both components.
The dynamics of the concentration are determined from

the continuity equation, ∂tϕþ∇ · ðϕvnÞ ¼ 0. For the
polarization and network configuration, we derive in the
Supplemental Material [14] the following, minimal con-
stitutive relations:

ð∂t þ vs · ∇Þp ¼ 1

γ1
hþ p ·∇vs þ λJ; ð2Þ

ð∂t þ vn ·∇ÞB ¼ −
1

τ

∂B
∂σel ∶σ

el þ B∇vn þ ð∇vnÞTB

þ 1

2
ξðJpþ pJÞ: ð3Þ

In Eq. (2), γ1 is the rotational viscosity, h ¼ −δF=δp is the
solvent orientational field, and the second term in the right-
hand side (rhs) is a convective term [15–18]. In Eq. (3),
τ is a viscoelastic relaxation time and σel is the elastic
(Kirchhoff) stress [16]. It is given by σel ¼ −2HBB, where
HB ¼ −δF=δB is the network molecular field. The next
two terms in Eq. (3) are convective terms [15].
The last terms in rhs of Eqs. (2) and (3) are reactive

couplings allowed by the polar symmetry. We refer to λ as
the permeation-alignment parameter. It couples the polari-
zation rate with the relative current. We refer to ξ as the
permeation-deformation parameter. It couples the network
strain-rate with the relative current. Both λ and ξ have units
of inverse length. They are central to our work, and we give
a heuristic description of their roles in Fig. 1(a). In the
absence of polarization and for a linear elastic stress-strain
relation, Eq. (3) reduces to the upper-convected Maxwell
equation [19].
Onsager’s reciprocal relations infer reciprocal, reactive

couplings involving λ and ξ in the constitutive equation for
the relative current J. As in the two-fluid model, friction
due to the relative current acts as a relative force between
the components. Therefore, the new permeation couplings
are concurrent with new relative forces between the gel
components [14],

f rel ¼ 1

γ
J − ϕð1 − ϕÞðλhþ ξHB · pþ νΔμpÞ: ð4Þ

Here, we included an active relative force ∼νΔμ, where ν
has units of inverse length, which results in an active
relative current.

Overall, the force-balance equations for the two compo-
nents read

f n − ϕ∇δP ¼ f rel;

f s − ð1 − ϕÞ∇δP ¼ −f rel; ð5Þ

where f n and f s are the forces acting on the network and
solvent, respectively, and δP is a pressure difference that
enforces incompressibility [14]. Equation (5) reduces to a
standard two-fluid model [20] in the absence of activity and
polarization. As the new relative forces do not include any
derivatives, as opposed to the stress and pressure terms,
they are especially important in the limit of small wave
vectors.
The forces acting on each of the components are [14]

fnα ¼ ∂βσ
el
αβ − ϕ∂αμ̄ −HB

βγ∂αBγβ; ð6Þ

fsα ¼ ∂β½2ηsvsαβ − hαpβ þ ð1 − ϕÞζΔμQαβ� − hβ∂αpβ: ð7Þ

In Eq. (6), the second term in rhs is the osmotic pressure
gradient with μ̄ ¼ δF=δϕ being the relative chemical
potential, and the last term originates in the Ericksen stress
of the gel. In Eq. (7), ηs is the solvent viscosity and vsαβ ¼
ð∂αvsβ þ ∂βvsαÞ=2 is the solvent strain rate. The next term is
the stress due to polarization rotations and the last term in
the parenthesis is an active stress, proportional to the
nematic tensor Q and solvent concentration. The last term
in rhs also originates in the Ericksen stress. These equations
satisfy Onsager reciprocity with the convective terms in
Eqs. (2) and (3).
Linear stability analysis.—We examine the linear sta-

bility of the steady state with respect to perturbations
with a growth rate s and wave vector q, of the form

(a) (b)

FIG. 1. Heuristic description of a polar solvent (green, polari-
zation indicated by a black arrow) and a viscoelastic network
(purple). (a) Reactive, polar couplings for J0 < 0; permeation-
deformation coupling, where the network becomes more aligned
(ξ < 0) or less aligned (ξ > 0) with the relative current and
solvent polarization, and permeation-alignment coupling, where
the solvent becomes aligned against (λ < 0) or in the direction of
the relative current (λ > 0). (b) The system is unstable for ξ ¼
λ ¼ 0 and J0Kd < 0, where the relative current brings the polar
solvent closer together and increases its concentration.
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exp ðstþ iq · rÞ. The steady state is homogeneous, ϕ ¼ ϕ0,
p ¼ p0 ¼ x̂, and B ¼ B0, with a relative current driven by
the active relative force, given by J0 ¼ J0p0 with
J0 ¼ γϕ0ð1 − ϕ0ÞνΔμ. The system is stable if Res < 0
for all the eigenvalues of the linear system. The details of
the analysis are found in the Supplemental Material [14].
For simplicity and in order to highlight new instabilities
that result from the polar couplings, we focus on a two-
dimensional system with wave vectors perpendicular to the
steady-state polarization, q ¼ qŷ [21–23]. We consider the
strain free energy, fB ¼ GϕTrðB − lnBÞ=2, corresponding
to Gaussian polymer chains [24–26], whereGϕ is the shear
modulus, and fBp ¼ 0.
In the hydrodynamic limit, we consider small wave

vectors and solve for the growth rate up to quadratic order
in q, s ≃ s0 þ iuq −Dq2, where s0 is a relaxation rate, u a
velocity, and D a diffusion coefficient. In the opposite,
large-q limit, the system is always stable [14].
First, we analyze the stability for λ ¼ ξ ¼ 0. The uniform

steady state has no deformation (isotropic network),
B0
αβ ¼ δαβ. There are two purely hydrodynamic modes

with s0 ¼ 0, which correspond to linear combinations
of p1 and ϕ1 for q ¼ 0. Their velocity is given by
u ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2J0lp=½τpð1 − ϕ0Þ�
p

, where lp ¼ K=Kd is a polari-
zation length scale, which may be negative, and τp ¼
l2p=Dp is a relaxation time associated with the angular
diffusion coefficient, Dp ¼ ð1 − ϕ0Þ2K=γ1. The velocity is
imaginary for J0Kd < 0, in which case the growth rate is
positive. This instability can be understood intuitively; the
polar splay aligns the solvent molecules toward each other,
while the active relative current brings them closer together,
as is illustrated in Fig. 1(b).

The quadratic correction is given by
D ¼ ðDp þDϕ þDζÞ=2, where Dϕ ¼ γϕ0ð1 − ϕ0Þ=χ is
the osmotic diffusion coefficient, with 1=χ ¼ ∂2fϕ=∂ϕ2

being the inverse osmotic compressibility. The active term,
Dζ ¼ ϕ0γζΔμ=2, originates in the concentration depend-
ence of the active stress. The active stress varies with the
concentration, resulting in a relative current that modifies
the concentration further. For sufficiently negative active
stresses, the quadratic correction vanishes and then
becomes negative. The critical active stress when this
occurs is ζcΔμ ¼ −2ðDp þDϕÞ=ðγϕ0Þ.
The system is unstable for a combination of an imaginary

u and negative D, where the growth rate is positive and
increases with q. As the system is stable for large wave
vectors, this instability persists only up to a finite q, and
there exists a most unstable wave vector q� with a fastest
growth rate s�. For an imaginary velocity, u ¼ ijuj, and
positive quadratic coefficient, D > 0, they are found
analytically as q� ¼ juj=2D and s� ¼ juj2=4D. If the
velocity u is real, a vanishing diffusion constant (D ¼ 0)
infers traveling waves (Hopf bifurcation). Beyond this
threshold, for D < 0, the concentration-polarization insta-
bility is oscillating in time, and the values of q� and s� can
be calculated numerically. The linear stability analysis for
ξ ¼ λ ¼ 0 is summarized in Fig. 2(a). Note that in the
passive limit (Δμ ¼ 0), the linear term vanishes (u ¼ 0),
and the system is unstable for 4χK2

d > K [11]. We assume
that 4χK2

d < K hereafter.
Next, we perform the linear stability analysis for ξ ≠ 0

and λ ≠ 0. In addition to a polarization-concentration
instability, we demonstrate a possible strain instability.
The eigenvector of this instability reduces to a strain

FIG. 2. Linear stability diagrams for active, permeating, polar gels. Polarization, concentration, and possible strain instabilities are
denoted by p, ϕ, and gray B, respectively. Waves indicate instabilities that oscillate in time. J0 is written in units of ð1 − ϕ0Þlp=τp.
(a) Stability diagram for ξ ¼ λ ¼ 0. The value 2ðDp þDϕÞ ¼ γϕ0Δμ is used. (b) Stability diagram for λ ¼ 0, ξ ≠ 0 with Jξ written in
units of ð1 − ϕ0Þlp=τp. The values 1þ ðDϕ þDζÞ=Dp ¼ DB=Dp ¼ 2ηsτ=ðηs þ ηnÞτp are used. (c) Stability diagram for ξ ¼ 0, λ ≠ 0

with λ written in units of 1=ð1 − ϕ0Þlp. The values Dp ¼ Dϕ þDζ , 4γ1=ð1 − ϕ0Þ ¼ 3½ηs=ð1 − ϕ0Þ2 þ ηn=ϕ2
0�, 2ϕ0γ1γ ¼ 3ð1 − ϕ0Þl2p,

and τ ¼ 2τp are used.
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component for q ¼ 0 (Bxy for ξ ≠ 0 and Byy for λ ≠ 0), and
its growth rate is s ¼ s0 −Dq2 with s0 < 0. As the growth
rate is negative for both small and large q values in this
case, a numerical calculation of sðqÞ is required to verify
the instability for intermediate q values.
Permeation Deformation ðλ ¼ 0; ξ ≠ 0Þ.—The permea-

tion-deformation coupling, combined with the active rel-
ative current, deforms the network in the steady state,
B0
αβ ¼ δαβ þ ξJ0τp0

αp0
β. The network is more (less) aligned

with the flowing solvent for ξJ0 > 0 (ξJ0 < 0). The net-
work also expands (contracts) for ξJ0 > 0 (ξJ0 < 0). As
Bαβ is a positive-definite tensor, a steady state exists only
for ξJ0τ > −1. We assume a small value of ξJ0τ and
expand our results to linear order in ξ [14].
The permeation-deformation coupling retains the pos-

sible polarization-concentration instability to linear order in
q, with u ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðJ0 þ JξÞlp=½τpð1 − ϕ0Þ�
p

. Compared to
our previous result, note the additional active relative-
current term, Jξ ¼ ξγϕ0ð1 − ϕ0Þ2ζΔμηn=½2ðηs þ ηnÞ�,
where ηn ¼ Gϕ0τ is the network viscosity. This current
originates in the active stress, which strains the network,
and induces a relative current due to the permeation-
deformation coupling. An instability occurs for
(J0 þ Jξ) Kd < 0.
The diffusion coefficient is given by D ¼ ðDp þDϕþ

Dζ þDξÞ=2, with Dξ¼−2ηsτlpJξ=½ð1−ϕ0ÞðηsþηnÞτp�, it
can be either positive or negative, depending on the sign of
JξKd. The mechanism driving the instability can be under-
stood by considering a small concentration fluctuation. The
polar-splay term results in a polarization rotation that
strains the network, due to the active stress. The perme-
ation-deformation coupling then induces a relative current
that modifies the concentration. The feedback can be either
positive or negative.
The permeation-deformation coupling may lead to a

shear-strain instability as well. The shear strain relaxes at
q ¼ 0 with a rate s0 ¼ −ð1þ ηn=ηsÞ=τ. The linear correc-
tion vanishes, while the diffusion coefficient is given by
D ¼ DB −Dξ, where DB ¼ Gγ=ð1 − ϕ0Þ is the strain dif-
fusion coefficient, due to permeation. This infers a possible
instability for Dξ > DB. The mechanism driving the insta-
bility is as follows: a shear strain induces a relative current,
due to permeation deformation. The resulting concentration
gradient rotates the polarization due to the polar splay term,
and the resulting active stress shears the network further.
This feedback can be either positive or negative.
The linear stability analysis in the presence of perme-

ation deformation is summarized in Fig. 2(b). As the
instabilities are mainly related to network deformations,
stability can be achieved by reducing strain. This is possible
either by a strong suppression (large G with fixed τ) or fast
relaxation (small τ for fixed G).
Permeation alignment ðξ ¼ 0; λ ≠ 0Þ.—We study

the stability up to linear order in λ [14]. The

network is isotropic in the steady state with
B0
αβ ¼ δαβ. The polarization-concentration velocity is

u ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2lp=τpð1 − ϕ0Þ þ λðDϕ þDζÞ�J0
p

. The second
term in the parenthesis is independent of polar splay; as
the polarization rotates, it exerts an active relative force,
which leads to a relative current. The permeation-alignment
coupling then rotates the polarization further. An instability
to linear order in q occurs when the argument of the square
root is negative.
The diffusion coefficient is given by D ¼ ðDp þDϕþ

Dζ þDλÞ=2, with Dλ¼2λDϕχf½ηs=ð1−ϕ0Þ2þηn=ϕ2
0�J0þ

2ϕ0ð1−ϕ0Þ2Kdg. It can be either positive or negative and
includes contributions from two mechanisms: any polari-
zation fluctuation causes both an active relative force ∼J0
(first mechanism) and a concentration gradient through the
polar-splay coupling ∼Kd (second mechanism). Both
induce a relative current that rotates the polarization, due
to the permeation-alignment coupling. This feedback can
be either positive or negative.
The permeation-alignment coupling can result in an

instability for the elongation strain Byy. The growth rate
relaxes for q ¼ 0 as s0 ¼ −1=τ. The linear correction
vanishes, while the diffusion coefficient is given by
D ¼ ð1 − λτJ0ÞDB. In order to understand the λ term,
consider a fluctuation in Byy. The resulting stress induces a
relative current that rotates the polarization by permeation
alignment. The active relative force then modifies the
relative current that further strains the network by
convection.
The linear stability analysis in the presence of perme-

ation alignment is summarized in Fig. 2(c). As the
instabilities are mainly related to the relative current in
the y direction, stability can be achieved by lowering the
pressure gradient. This is possible by lowering the solvent
and network viscosities, which induce smaller pressures.
Discussion.—In this Letter, we have reported finite-

wavelength instabilities that result from polar couplings
to the relative current between a viscoelastic network and
active, polar fluid. This implies possible mesophases and
periodic domains with continuous flow patterns [11,27,28].
The permeation couplings may also modify known insta-
bilities in ordered, active nematics [17,18,22], close to the
isotropic-polar transition [29], and in the shape of active
permeating sheets [30].
Our theory can be used to describe cell migration in

tissues. Cells often migrate collectively in a fluidlike
manner with weak and short-lived mutual adhesions
(“multicellular streaming” [4,31]). In a coarse-grained
view, this can be regarded as permeation of an active,
polar fluid in a viscoelastic network. Our analysis suggests
the required physical conditions for migrating cells to
traverse a tissue homogeneously (a stable, flowing steady
state), as opposed to migration in strands or local cell
movement in confined domains (finite-q instabilities).
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The novel ingredients of our theory describe in this
context the forces exerted between cells and, for example,
the extracellular matrix (ECM), including matrix deforma-
tion [32,33]. The cross-talk between migrating cells and the
ECM is called “dynamic reciprocity,” and it is considered
important to embryonic development, tissue regeneration,
and metastasis [34–36]. Our work thus provides a new,
hydrodynamic framework to describe dynamic reciprocity
during collective migration. We investigate this application
further in a separate study [37].
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