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We reveal the microscopic origin of electric polarization P⃗ induced by noncollinear magnetic order. We

show that in Mott insulators, such P⃗ is given by all possible combinations of position operators ˆ⃗rij ¼
ð⃗r0ij; ⃗rijÞ and transfer integrals t̂ij ¼ ðt0ij; tijÞ in the bonds, where ⃗r0ij and t0ij are spin-independent

contributions in the basis of Kramers doublet states, while ⃗rij and tij stem solely from the spin-orbit

interaction. Among them, the combination t0ij ⃗rij, which couples to the spin current, remains finite in the

centrosymmetric bonds, thus yielding finite P⃗ in the case of noncollinear arrangement of spins. The form of
the magnetoelectric coupling, which is controlled by ⃗rij, appears to be rich and is not limited to the

phenomenological law P⃗ ∼ ϵij × ½ei × ej� with ϵij being the bond vector connecting the spins ei and ej.
Using density-functional theory, we illustrate how the proposed mechanism works in the spiral magnets
CuCl2, CuBr2, CuO, and α-Li2IrO3, providing a consistent explanation for the available experimental data.

DOI: 10.1103/PhysRevLett.127.187601

Introduction.—In order to make a material ferroelectric,
it is essential to break the inversion symmetry. Canonically,
this implies some crystallographic instability toward
polar atomic displacements [1]. Nevertheless, there is a
very special class of materials, called multiferroics, where
inversion symmetry can be broken by magnetic means in an
otherwise perfect crystallographically centrosymmetric
lattice [2]. The microscopic origin of multiferroicity is
the fundamental physical problem and its practical reali-
zation is an important step toward mutual control of electric
polarization and magnetism in novel electronic devices.
There can be various scenarios of the magnetic inversion

symmetry breaking. In certain multiferroic materials, the
inversion symmetry is microscopically broken by local
distortions, so that individual bonds can be formally
associated with some polarization vectors. When arranged
in an antiferroelectric manner, these bonds result in zero net
polarization. Nevertheless, if some of them become inequi-
valent owing to complex magnetic order, the perfect
cancellation of polarization vectors does not occur and
the system becomes ferroelectric.
However, what if the bond itself is centrosymmetric?

Can it become electrically polarized by magnetic means?
An affirmative answer to these questions was given by
Katsura, Nagaosa, and Balatsky (KNB) [3], who consid-
ered a very special microscopic model and argued that the

noncollinear alignment of spins can induce the polarization
P⃗ ∼ ϵij × ½ei × ej�, which lies in the plane of spins ei and ej
and is perpendicular to the bond vector ϵij. This finding was
supported by phenomenological considerations [4], and the
proposed mechanism was called the “spin-current mecha-
nism,” which is widely used for the analysis of magneto-
electric coupling in spiral magnets [5], typically in
combination with two other mechanisms: “exchange stric-
tion” [6,7] and “spin-dependent p-d hybridization” [8].
Nevertheless, the analysis remains largely phenomeno-

logical. First, the properties of all spiral multiferroics are
usually discussed from the viewpoint of the spin-current
model [9–14]. However, there are only few materials, such
as CuCl2 [9] and CuBr2 [10], consisting solely of the
centrosymmetric bonds. In other materials, the situation
is not so straightforward [11–14]: as the symmetry is low,
the bonds are not necessarily centrosymmetric, thus
allowing for alternative explanations [15–17]. Then, if
the KNB model fails to explain the properties of spiral
magnets, it typically causes some confusion with identify-
ing the problem and choosing a suitable alternative [18].
Although density-functional theory (DFT) provides a
powerful tool for calculating the polarization [19,20],
the formal mapping of DFT results on a specifically
selected model [21] does not shed light on microscopic
mechanisms underlying this model.
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In this Letter, we formulate a transparent microscopic
theory of electric polarization induced by noncollinear
magnetic order. We explicitly show how and why the
noncollinear arrangement of spins gives rise to electric
polarization even in centrosymmetric bonds. We relate the
magnetoelectric coupling to fundamental symmetry proper-
ties of the position operator and transfer integrals in the
basis of Kramers states and argue that the paradigm of the
spin current–induced polarization appears to be much
richer and goes beyond the phenomenological low P⃗ ∼
ϵij × ½ei × ej� [17,18,21]. We evaluate all relevant param-
eters on the basis of DFTand show how they are manifested
in the properties of real spiral magnets.
Basic theory.—The simplest toy model, which captures

the physics, is the 1-orbital Hubbard model with spin-orbit
interaction (SOI):

Ĥ ¼
X
ij

X
σσ0

tσσ
0

ij ĉ†iσ ĉjσ0 þU
X
i

n̂i↑n̂i↓; ð1Þ

where ĉ†iσ (ĉiσ) creates (annihilates) a hole with pseudospin
σ ¼ þ or − at site i, n̂iσ ¼ ĉ†iσ ĉiσ and t̂ij ¼ ½tσσ0ij � are the
transfer integrals, and U is the on-site Coulomb repulsion.
The Wannier functions, jiσi ¼ ĉ†iσj0i, can be chosen as the
Kramers pairs, transforming under the time reversal as
T̂ji ∓i ¼ �ji�i. All model parameters are derived from
DFT [22] in the subspace of Wannier states, which are
primarily responsible for the magnetism [20,23]. The
Coulomb U is evaluated within constrained random-phase
approximation [24].
Since the polarization in metals is screened by free

electrons, the multiferroicity is the property of insulating
state. Then, the problem can be solved in the spirit of
superexchange theory by treating t̂ij as a perturbation [25].
Let jαoi i ¼ cosðθi=2Þjiþi − sinðθi=2Þe−iϕi ji−i be the
occupied orbital in the limit t̂ij ¼ 0, where θi and ϕi

specify the direction ei ¼ ðcosϕi sin θi; sinϕi sin θi; cos θiÞ
of spin, and jαui i ¼ sinðθi=2Þeiϕi jiþi þ cosðθi=2Þji−i is
the unoccupied orbital. To the first order in ðt̂ij=UÞ, jαoi i
will transform to the Wannier function jwii ¼ jαoi iþP

j jαoi→ji, acquiring the tails

jαoi→ji ¼ −
1

U
jαuj ihαuj jt̂jijαoi i ð2Þ

on surrounding sites j. Considering expectation values of
the kinetic energy hwijt̂ijjwii, one can readily formulate the
spin model

E ¼
X
hiji

ð−Jijei · ej þ Dij · ½ei × ej� þ ei · Γ
↔

ijejÞ; ð3Þ

describing the energy change in terms of isotropic
(Jij), Dzyaloshinskii-Moriya (DM, Dij), and symmetric

anisotropic (Γ
↔

ij) interactions. A similar model can be
formulated for polarization [26]:

P⃗ ¼
X
hiji

ðP⃗ijei · ej þ P⃗ij · ½ei × ej� þ ei · Π⃗ijejÞ; ð4Þ

in terms of the vector P⃗ij ≡ ½Pv
ij�, rank-2 tensor

P⃗ij ≡ ½Pv;c
ij �, and rank-3 tensor Π⃗ij ≡ ½Πv;ab

ij � [27]. The
model parameters can be obtained from matrix elements of
the position operator in the framework of general theory for
polarization in periodic systems [19,20]:

P⃗ ¼ −
e
V

X
i

hwi j⃗rjwii ð5Þ

(where V is the volume and −e is the electron charge).
Then, the only matrix elements that contribute to the
magnetic dependence of P⃗ are of the type hαoi j⃗rjαoi→ji.
Other contributions, such as hαoi→j j⃗rjαoi→ji or single-ion

anisotropy of P⃗, vanish in the 1-orbital model [17,18].
The 2 × 2 matrices t̂ij and ˆ⃗rij can be decomposed in

terms of the unity 1̂ and the vector σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ of Pauli
matrices as t̂ij ¼ t0ij1̂þ itijσ̂ and ˆ⃗rij ¼ ⃗r0ij1̂þ i⃗rijσ̂ with the
real coefficients ðt0ij; tijÞ and ð⃗r0ij; ⃗rijÞ. Furthermore, the
hermiticity yields t0ji ¼ t0ij, tji ¼ −tij, ⃗r0ji ¼ ⃗r0ij, and ⃗rji ¼
−⃗rij [28]. The corresponding spin model parameters are
summarized in Table I [29].
A very special case is when two sites i and j are

connected by spacial inversion. Since t̂ij is a scalar but
ˆ⃗rij is a (true) vector, inversion symmetry requires that t̂ji ¼
t̂ij but ˆ⃗rji ¼ −ˆ⃗rij. In combination with hermiticity, we have
tij ¼ 0 and ⃗r0ij ¼ 0. Then, the DM interaction Dij vanishes,
which is the general property of centrosymmetric (c)
bonds, and so does Γij, being not independent in the
1-orbital model [31]. Thus, the only interaction in the
c bonds will be Jij. The behavior of electric polari-

zation is different: P⃗ij ¼ 0 and Π⃗ij ¼ 0, while P⃗ij ¼
−ð2e=VÞðt0ij ⃗rij=UÞ≡ C⃗ij can persist even in the c bond

TABLE I. Isotropic (Jij and P⃗ij), antisymmetric (Dij and P⃗ij),
and anisotropic symmetric (Γij ¼ Γ0

ij − 1
2
TrΓ0

ij and Π⃗ij ¼
Π⃗0

ij − 1
2
TrΠ⃗0

ij) parameters of exchange interactions and polari-
zation. ⊗ denotes the direct product.

Exchange Polarization

Jij ¼ −½ðt0ijÞ2=U� P⃗ij ¼ −ð2e=VÞð⃗r0ijt0ij=UÞ
Dij ¼ ð2t0ijtij=UÞ P⃗ij ¼ −ð2e=VÞ½ð⃗r0ijtij þ t0ij ⃗rijÞ=U�
Γ0
ij ¼ ½ð2tij ⊗ tijÞ=U� Π⃗0

ij ¼ −ðe=VÞ½ð⃗rij ⊗ tij þ tij ⊗ ⃗rijÞ=U�
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(in agreement with symmetry arguments [21]), and the

corresponding polarization C⃗ij · ½ei × ej� is induced solely
by the noncollinear arrangement of spins.
In the noncentrosymmetric (nc) bonds, tij and ⃗r0ij are

finite, resulting in nonzero Dij, Γij, P⃗ij, and Π⃗ij. Moreover,

P⃗ij acquires an additional asymmetric contribution

A⃗ij ¼ −ð2e=VÞð⃗r0ijtij=UÞ. P⃗ij and A⃗ij can be viewed as
a regular polarization of the nc bond, −ðe⃗r0ij=VÞ, which is
additionally modulated by the spin texture. If this texture
results from the competition of Dij and Jij, a similar

competition takes place between A⃗ij and P⃗ij, as it depends
on the same ratio ðtij=t0ijÞ. Therefore, there will be a

cancellation of contributions associated with A⃗ij and

P⃗ij [18].
The 1-orbital model is subjected to hidden symmetries

that allow the full elimination of tij by rotating the spins
at sites i and j [31]. In such local coordinate frame,
the bond is solely described by the transfer integral

t̃0ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0ijÞ2 þ tij · tij

q
, the exchange interactions are

described by Jij, and the electric polarization is described

by the competition of P⃗ij and C⃗ij (with t̃0ij instead of t0ij).

Using jαuj ihαuj j ¼ 1̂ − jαoj ihαoj j in Eq. (2), each term in the
spin model can be further expressed via the expectation
value of some quantity in the ground state. Since ½ei × ej�
is related to the spin current ĵsij ¼ ðit̃0ij=2Þð ˆ̃c†iσ σ̂σσ0 ˆ̃cjσ0 −
ˆ̃c†jσ σ̂σσ0 ˆ̃ciσ0 Þ [32], one can find that P⃗ ∼ C⃗ij · hjSiji [29] in
analogy with the DM interactions [33].
The 3 × 3 tensor C⃗ij ¼ ½Cv;cij � can be generally decom-

posed into symmetric and antisymmetric parts, C⃗ij ¼
C⃗S
ij þ C⃗A

ij. The latter is expressed as εvcaπ
a
ij, in terms of

the vector πij ¼ ½πaij� and Levi-Civita symbol εvca. The

corresponding P⃗ ¼ πij × ½ei × ej� is reminiscent of the
KNB expression [3,4]. Nevertheless, πij is not necessarily

parallel to ϵij, and C⃗ can include C⃗S
ij. Thus, the proposed

spin-current theory is not limited to the conventional law
P⃗ ∼ ϵij × ½ei × ej� and includes other interesting options.
Below, we consider examples of how it works for different
symmetries.
Relativistic j ¼ 1

2
manifold of t2g states.—In the cubic

environment, the sixfold degenerate t2g states are split by
SOI into fourfold degenerate Γ8 states and the Kramers pair
of Γ7 states jþi ¼ ð1= ffiffiffi

3
p Þðjxy↓i − jyz ↑i þ ijzx ↑iÞ and

j−i ¼ ð1= ffiffiffi
3

p Þðjxy ↑i þ jyz↓i þ ijzx↓iÞ. The latter can be
viewed as the effective j ¼ 1

2
pseudospin states, which play

a key role in the physics of spin-orbit Mott insulators
realized in 5d Ir oxides [34]. Since the KNB expression was
derived assuming this symmetry of states [3], we start our
analysis with this example and consider a perfect bond

obeying the Cz
∞ symmetry along z. It is straightforward to

show that the only nonzero elements of ⃗rij ¼ ½rv;cij � will be
ry;xij ¼ −rx;yij ¼ 1

3
ðhxyijyjzxji − hzxijyjxyjiÞ [29]. The anti-

symmetric tensor can be presented as εabzπ
z
ij, where ab ¼

xy or yx, and the vector πij ¼ ð0; 0; πzijÞ is indeed parallel to
the bond. Thus, we do recover the KNB expression P⃗ ∼
ϵij × ½ei × ej� [3]. Nevertheless, this form of P⃗ is the
consequence of the particular symmetry of undistorted
t2g states. Other symmetries may yield different P⃗.
z2 states with SOI.—The simplest example illustrating

this idea is the z2 states, which are stabilized by the crystal
field and mixed with the yz and zx states by SOI. The
Kramers states are [35] jþi ∝ jz2↓i þ ξðijyz ↑i − jzx ↑iÞ
and j−i ∝ jz2 ↑i þ ξðijyz↓i þ jzx↓iÞ (ξ being the ratio of
SOI to the crystal field splitting), and the nonvanishing
elements rv;cij are ry;xij ¼ rx;yij ∝ hz2i jxjzxji − hzxijxjz2ji [29].
Thus, the tensor ½rv;cij � is symmetric, meaning that for two
noncollinear spins e1;2 ¼ ðsin θ cosφ; sin θ sinφ;� cos θÞ,
the polarization P⃗ ∼ ðcosφ;− sinφ; 0Þ is still perpendicular
to the bond but does not necessarily lie in the spin plane.
α-Li2IrO3.—As the first realistic example, it is instructive

to consider the spin-orbit Mott insulator α-Li2IrO3, which
attracted a great deal of attention as a possible material for
realizing the Kitaev spin liquid state [36]. In this mono-
clinic compound (space group C2=m), there are two types
of nearest c bonds: the strongest one [01 in Fig. 1(a)] along
the monoclinic b axis, which is transformed to itself by the
twofold rotation about b, and two rotationally noninvariant
weak bonds (02 and 03) that are connected by the twofold
rotation.

(a)

FIG. 1. (a) Tensor C⃗ij in the nearest c bonds of α-Li2IrO3 (in
μC=m2) in the local coordinate frames denoted by x, y, and z.
(b) Double-q magnetic structure realized in α-Li2IrO3. Inversion
center is denoted by �. (c) Magnetically induced polarization in
the chains with þq and −q depending on the rotation of the spin-
spiral plane about the monoclinic b axis, as explained in (d) in the
planes ab and bc. θ is the angle formed by the spin-spiral plane
and the monoclinic a axis.
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The minimal model was constructed for the magnetic
j ¼ 1

2
bands [29]. In the local coordinate frame, where the

z axis is along the bond, the tensor C⃗01 has only x and y
components [see Fig. 1(a)]. Hence, the polarization is
perpendicular to the bond and, considering only the

antisymmetric part of C⃗01, we would indeed obtain P⃗ ∼
ϵ01 × ½e0 × e1� [3,4]. However, besides the antisymmetric

contribution, C⃗01 clearly shows a strong symmetric one,
which is expected for this type of symmetry [37]. In the

low-symmetry bonds 02 and 03, C⃗ij is even more complex:
all elements are finite and inequivalent, so that the
polarization can be perpendicular as well as parallel to
the bond.
Since α-Li2IrO3 is a noncollinear magnet with q ≈

ð1
3
; 0; 0Þ [38], it is interesting to ask whether it can become

multiferroic. The magnetic texture can be viewed as the
double-q spiral, propagating in alternating zigzag chains
with þq and −q [Fig. 1(b)]. The spiral order induces an
appreciable polarization in each of the chains [Fig. 1(c)].
However, the chains are connected by the inversion
operation, the contributions with þq and −q cancel each
other, and α-Li2IrO3 remains antiferroelectric.
Copper dihalides.—CuCl2 and CuBr2 form the chainlike

monoclinic structure (space group C2=m), where all Cu-Cu
bonds are centrosymmetric. Below the Néel temperature
(TN ¼ 24 and 74 K for CuCl2 and CuBr2, respectively),
they develop a cycloidal magnetic order with q ≈ ð1; 1

4
; 1
2
Þ

[Fig. 2(a)], which coincides with the onset of ferroelec-
tricity [9,10].
The minimal model was constructed for the magnetic

“Cu x2 − y2” bands [29]. The obtained parameters Jij
nicely reproduce the experimental cycloidal order [39].

Polarization induced by the cycloidal order is related to C⃗ij.
Since twofold rotations about b transform the chains to

themselves, the symmetry properties of C⃗ij in these chains

are similar to C⃗01 in α-Li2IrO3 [Fig. 1(a)], and the
polarization is expected to be perpendicular to b. In the

nearest bonds�b, the antisymmetric part of C⃗�b is given by
π�b ¼ ð0;�0.5; 0Þ and ð0;�8; 0Þ μC=m2 for CuCl2 and
CuBr2, respectively, which is too small to account for the
total P⃗, and a substantially larger contribution stems from
the symmetric part. The behavior of P⃗ (after summation
over all bonds) is summarized in Figs. 2(d) and (e). For
CuCl2, we note a good agreement with the experiment [9],
including deviation of P⃗ from the spin-spiral plane by
the angle θ þ θP. Similar behavior is expected for CuBr2
with somewhat larger TN and P⃗ due to stronger SOI and
hybridization mediated by Br 4p states.
Cupric oxide.—CuO with the centrosymmetric mono-

clinic structure (space group C2=c) has attracted much
attention as a simple binary material that becomes
multiferroic at exceptionally high temperature [13].

Ferroelectricity is driven by a spiral magnetic order with
q ≈ ð1

2
; 0;− 1

2
Þ [see Fig. 3(a)] emerging between 213 and

230 K [40] (and is expected even at room temperature
under hydrostatic pressure [41]).
Construction of the minimal model is similar to Cu

dihalides [29]. Although the crystal structure of CuO

(a)

(b)
(c)

(d)

(e)

FIG. 2. (a) Crystal and magnetic structure of CrCl2 in the ab
plane. (b) Rotations of the spin-spiral plane about the axis b.
(c) Angles θ and θP ¼ tan−1ðPz=PxÞ specifying the spiral plane
and electric polarization, respectively. (d),(e) Angle dependence
of electric polarization in CuCl2 and CuBr2.

(a)

(b) (c) (d)

(e)

(f)

FIG. 3. (a) Spiral magnetic order in CuO. (b),(c) Nearest c and
(d) nc bonds in the monoclinic planes ab and bc with the vectors
of induced polarization. (e) Electric polarization (total and

centrosymmetric part described by C⃗ij) as the function of angle
θ formed by the spins in the ac plane with the axis a. Here, x and
y are chosen along a and b, respectively, and z is perpendicular to
a and b. (f) Electric polarization perpendicular (P⊥) and parallel
(Pk) to the bond, calculated for the nearest c and nc bonds as a
function of θ.
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includes both c and nc bonds (Fig. 3), the parameters
associated with the latter can be largely eliminated [42],
while C⃗ij is responsible for 90% of P⃗ [Fig. 3(e)].
Since the symmetry is low, the form of C⃗ij is complex

[29], and the polarization vectors in individual bonds are
specified by all three projections, as shown in Fig. 3.
Notably, there can be appreciable components along the
bonds [Fig. 3(f)]. Nevertheless, due to the twofold rotations
about y (b), only the y component of P⃗ will survive after
summation over all equivalent bonds. This is an important
point where the symmetry comes into play: the experi-
mental polarization is induced along the y axis, but not
because of the phenomenological rule q × ½ei × ej� [3,4].
Quite the contrary, it is a consequence of the particular
C2=c symmetry of CuO. Total Pb ≈ 55 μC=m2 is compa-
rable to the experimental Pb ∼ 150 μC=m2 [13,43].
Conclusion.—We have presented a toy theory revealing

the fundamental origin of the magnetic inversion symmetry
breaking in centrosymmetric systems. Because of the
intrinsic symmetries of the transfer integrals and position
operator in the basis of Kramers states, the combination
t0ij ⃗rij remains finite, yielding finite polarization for non-
collinear spins. This polarization depends on the symmetry
of Kramers states, providing new alternatives beyond the
phenomenological spin-current model. The abilities of the
proposed theory are illustrated on spiral magnets CuCl2,
CuBr2, CuO, and α-Li2IrO3.
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Bordács, I. Kézsmárki, and A. Loidl, Sci. Adv. 1, e1500916
(2015).

[16] I. V. Solovyev, Phys. Rev. B 87, 144403 (2013); I. V.
Solovyev and S. A. Nikolaev, Phys. Rev. B 90, 184425
(2014); I. V. Solovyev, Phys. Rev. B 95, 214406 (2017).

[17] S. A.Nikolaev and I. V. Solovyev, Phys. Rev. B 99, 100401(R)
(2019).

[18] R. Ono, S. Nikolaev, and I. Solovyev, Phys. Rev. B 102,
064422 (2020).

[19] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(R) (1993); R. Resta, J. Phys.: Condens. Matter 22, 123201
(2010).

[20] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[21] H. J. Xiang, E. J. Kan, Y. Zhang, M.-H. Whangbo, and X. G.
Gong, Phys. Rev. Lett. 107, 157202 (2011).

[22] I. V. Solovyev, J. Phys.: Condens. Matter 20, 293201 (2008);
M. Imada andT.Miyake, J. Phys. Soc. Jpn.79, 112001 (2010).

[23] A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185,
2309 (2014).

[24] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.
Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104
(2004). The Coulomb U was evaluated as 1.5 eV for
α-Li2IrO3 and 4.3 eV for CrCl2, CrBr2, and CuO.

[25] P. W. Anderson, Phys. Rev. 115, 2 (1959).
[26] T. Moriya, J. Appl. Phys. 39, 1042 (1968).
[27] The vector symbol and index v are reserved for the direction

of polarization, while the bold symbols and indices after the
comma stand for the coupling to the spin part.

[28] For i ¼ j, one obtains tij ¼ 0 and ⃗rij ¼ 0, meaning that
there is no single-ion anisotropy for the energy or for the
polarization, and all magnetic state dependence of these
quantities stems from the bonds [18].

[29] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.127.187601 for deriva-
tion of the spin model for the electric polarization and details
of calculations. The Supplemental Material includes the
citations listed in Ref. [30].

[30] J. P. Perdew, K. Burke, andM. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996); A. Dal Corso, Comput. Mater. Sci. 95, 337
(2014); P. Giannozzi, S. Baroni, N. Bonini et al., J. Phys.:

PHYSICAL REVIEW LETTERS 127, 187601 (2021)

187601-5

https://doi.org/10.1103/PhysRevLett.108.137202
https://doi.org/10.1103/PhysRevLett.108.137202
https://doi.org/10.1021/jp000114x
https://doi.org/10.1038/nature05023
https://doi.org/10.1038/nature05023
https://doi.org/10.1126/science.1125227
https://doi.org/10.1038/nmat1804
https://doi.org/10.1103/Physics.2.20
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.96.067601
https://doi.org/10.1002/adma.200901961
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevLett.101.037210
https://doi.org/10.1103/PhysRevLett.101.037210
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1103/PhysRevB.82.064424
https://doi.org/10.1103/PhysRevB.82.064424
https://doi.org/10.1002/adma.201200734
https://doi.org/10.1002/adma.201200734
https://doi.org/10.1038/nature02018
https://doi.org/10.1103/PhysRevLett.97.097203
https://doi.org/10.1038/nmat2125
https://doi.org/10.1103/PhysRevLett.98.057601
https://doi.org/10.1103/PhysRevLett.98.057601
https://doi.org/10.1126/sciadv.1500916
https://doi.org/10.1126/sciadv.1500916
https://doi.org/10.1103/PhysRevB.87.144403
https://doi.org/10.1103/PhysRevB.90.184425
https://doi.org/10.1103/PhysRevB.90.184425
https://doi.org/10.1103/PhysRevB.95.214406
https://doi.org/10.1103/PhysRevB.99.100401
https://doi.org/10.1103/PhysRevB.99.100401
https://doi.org/10.1103/PhysRevB.102.064422
https://doi.org/10.1103/PhysRevB.102.064422
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1088/0953-8984/22/12/123201
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevLett.107.157202
https://doi.org/10.1088/0953-8984/20/29/293201
https://doi.org/10.1143/JPSJ.79.112001
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRev.115.2
https://doi.org/10.1063/1.1656160
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.187601
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.commatsci.2014.07.043
https://doi.org/10.1016/j.commatsci.2014.07.043
https://doi.org/10.1088/0953-8984/21/39/395502


Condens.Matter21, 395502 (2009);H. J.Monkhorst and J. D.
Pack, Phys. Rev. B 13, 5188 (1976); O. K. Andersen, Phys.
Rev. B 12, 3060 (1975); X.Wang, J. R. Yates, I. Souza, and D.
Vanderbilt, Phys. Rev. B 74, 195118 (2006); I. V. Solovyev
and S. V. Streltsov, Phys. Rev. Mater. 3, 114402 (2019).

[31] T. A. Kaplan, Z. Phys. B 49, 313 (1983); L. Shekhtman, O.
Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836
(1992).

[32] P. Bruno and V. K. Dugaev, Phys. Rev. B 72, 241302(R)
(2005).

[33] T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Phys. Rev.
Lett. 116, 247201 (2016).

[34] B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S.
Leem, J. Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V.
Durairaj, G. Cao, and E. Rotenberg, Phys. Rev. Lett. 101,
076402 (2008).

[35] H. Takayama, K.-P. Bohnen, and P. Fulde, Phys. Rev. B 14,
2287 (1976).

[36] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
105, 027204 (2010).

[37] If the Γ7 t2g states are distorted so that the jxyi, jyzi, and jzxi
orbitals contribute to j�i with unequal weights, the tensor
⃗rij is allowed to have simultaneously antisymmetric and
symmetric parts [29].

[38] S. C. Williams, R. D. Johnson, F. Freund, S. Choi, A.
Jesche, I. Kimchi, S. Manni, A. Bombardi, P. Manuel, P.
Gegenwart, and R. Coldea, Phys. Rev. B 93, 195158 (2016).

[39] There are four main interactions separated by monoclinic
translations b, 2b, 3b, and c: Jb ¼ −0.3 (−0.4), J2b ¼ −3.0
(−3.9), J3b ¼ −0.1 (−0.2), and Jc ¼ −0.7 (−1.4) meV for
CuCl2 (CuBr2), which are responsible for the spin-spiral
order in the chains (along b) and the antiferromagnetic
coupling between the chains (along c). The corresponding
TN , evaluated in the random phase approximation [29],
is 32 (56) K for CuCl2 (CuBr2).

[40] P. J. Brown, T. Chattopadhyay, J. B. Forsyth, V. Nunez, and
F. Tasset, J. Phys.: Condens. Matter 3, 4281 (1991).

[41] X. Rocquefelte1, K. Schwarz, P. Blaha, S. Kumar, and J. van
den Brink, Nat. Commun. 4, 2511 (2013).

[42] By properly choosing local coordinate frames, one can
eliminate x and z components of tij in the nearest nc bonds
between the ac planes [Fig. 3(d)]. The remaining Dy

ij

components do not contribute to the spiral magnetic order,
and the latter emerges solely from the competition of

isotropic Jij’s [29]. The same holds for A⃗ij ¼ ½Av;c
ij �, whose

only nonzero component is c ¼ y, and there is no contri-

bution to P⃗. The isotropic P⃗ij in the nc bonds can also be

large [29] but does not add up to P⃗ because of the 90°
alignment of spins.

[43] The difference can be related to the additional distortion
and lowering the symmetry from C2=c to Cc, observed in
CuO below TN : S. Asbrink and A. Waskowska, J. Phys.:
Condens. Matter 3, 8173 (1991).

PHYSICAL REVIEW LETTERS 127, 187601 (2021)

187601-6

https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevMaterials.3.114402
https://doi.org/10.1007/BF01301591
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevLett.69.836
https://doi.org/10.1103/PhysRevB.72.241302
https://doi.org/10.1103/PhysRevB.72.241302
https://doi.org/10.1103/PhysRevLett.116.247201
https://doi.org/10.1103/PhysRevLett.116.247201
https://doi.org/10.1103/PhysRevLett.101.076402
https://doi.org/10.1103/PhysRevLett.101.076402
https://doi.org/10.1103/PhysRevB.14.2287
https://doi.org/10.1103/PhysRevB.14.2287
https://doi.org/10.1103/PhysRevLett.105.027204
https://doi.org/10.1103/PhysRevLett.105.027204
https://doi.org/10.1103/PhysRevB.93.195158
https://doi.org/10.1088/0953-8984/3/23/016
https://doi.org/10.1038/ncomms3511
https://doi.org/10.1088/0953-8984/3/42/012
https://doi.org/10.1088/0953-8984/3/42/012

