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Whether the doped t-J model on the Kagome lattice supports exotic superconductivity has not been
decisively answered. In this Letter, we propose a new class of variational states for this model and perform a
large-scale variational Monte Carlo simulation on it. The proposed variational states are parameterized by
the SU(2)-gauge rotation angles, as the SU(2)-gauge structure hidden in the Gutzwiller-projected mean-
field Ansatz for the undoped model is broken upon doping. These variational doped states smoothly
connect to the previously studied U(1) π-flux or 0-flux states, and energy minimization among them yields
a chiral noncentrosymmetric nematic superconducting state with 2 × 2-enlarged unit cell. Moreover, this
pair density wave state possesses a finite Fermi surface for the Bogoliubov quasiparticles. We further study
experimentally relevant properties of this intriguing pairing state.
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Introduction.—Quantumspin liquids (QSL) have attracted
increasing interest in condensed matter physics in the past
decades [1–6]. They represent an exotic class of insulating
states that cannot be adiabatically connected into a trivial
band insulator. Moreover, a QSL state can support fraction-
alized excitations with fractional braiding statistics. One of
the most intriguing aspects of QSL lies in that doping a QSL
might naturally lead to high temperature superconductivity
(SC) [7–16] or a topologically ordered Fermi liquid state
(FL�) [17–19].
One promising model exhibiting a QSL ground state is

the spin-1=2 Heisenberg model on the Kagome lattice,
which is probably realized by the spin-liquid candidate
material Herbertsmithite [3]. Numerous efforts have
been devoted to studying the properties of this model for
several decades. Except for a few early results pointing
toward the valence bond solid state [20–22], dominating
numerical results suggest a QSL ground state for this model
[23–35]. Particularly, while a number of density-matrix
renormalization group simulations on wide cylinders have
exhibited evidence of a Z2 QSL with exponentially
decaying spin-spin correlation [23–28], recent infinite-size
density-matrix renormalization group simulations on infin-
ite cylinders [29], tensor-network simulations on infinite
systems [30], and variational Monte Carlo (VMC) studies
[31–33] suggest that the ground state is a gapless U(1)
Dirac QSL with algebraic correlation. While further studies
are still needed to reveal the precise nature of the ground

state at half filling, it is also desirable to study what
quantum state would be obtained when mobile charge
carriers are introduced into the QSL state by doping.
Specifically, can exotic superconductivity emerge upon
doping the Kagome QSL state?
The nature of the lightly doped Kagome system

described by the t-J model is not decisively known so
far. Nonetheless, a recent density-matrix renormalization
group study on the model with moderate doping on the
4-leg cylinder provided convincing evidence of an insulat-
ing holon Wigner crystal [36]. On the wider system, a
previous VMC investigation of this model on up to 82 × 9
lattice in a certain doping range suggests that the π-flux
Dirac U(1) spin liquid [31] is unstable against a 0-flux state
with a valence bond crystal (VBC) ordering [37,38]. As the
π-flux state has lower energy than the 0-flux state at half
filling, it is obvious that the 0-flux state obtained by VMC
at a certain doping range cannot be continuously connected
to the undoped π-flux QSL state [31]. It is natural to ask
what the ground state for the lightly doped t-J model on the
Kagome lattice is, assuming that the ground state of the
undoped system is a U(1) Dirac QSL.
In this Letter, we study the t-J model on the Kagome

lattice in the very low doping regime, which is expected to
smoothly connect with U(1) spin liquid at half filling [31],
by performing VMC simulations. Our study is inspired
by a crucial SU(2)-gauge structure [39–41] hidden in
the projective construction at half filling: two different
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mean-field (MF) Ansätze related by an arbitrary local
SU(2)-gauge rotation actually correspond to the same
physical spin state after the Gutzwiller projection. Such
gauge redundancy leads to a many-to-one labeling between
the mean-field Ansätze and the projected wave function at
half filling [42]. At finite doping, the breaking of this gauge
structure differentiates the many states related by the gauge
rotation, which form our variational groups. We choose the
doped 0-flux or π-flux states as our unrotated starting
points. Energy minimizations within both groups of varia-
tional states yield chiral noncentrosymmetric nematic super-
conducting states with 2 × 2-enlarged unit cell in the very
low doping regime, with the gauge-rotated π-flux state
smoothly connecting to the undoped π-flux QSL [31].
Remarkably, as the SU(2)-gauge rotation maintains the
quasiparticle spectrum, the obtained superconducting states
possess finite Fermi surface (FS) for the Bogoliubov
quasiparticles. The physical properties of these pairing states
are intriguing: although they are superconducting states, they
resemble those of the normal FL in many aspects.
Variational states.—We study the standard t-J model on

the Kagome lattice illustrated in Fig. 1(a):

H ¼ −t
X

hijiσ
PGðc†iσcjσ þH:c:ÞPG þ J

X

hiji

�
Si · Sj −

1

4
ninj

�
;

ð1Þ

where ciσ annihilates an electron on site i with spin σ, Si ¼
1
2
c†iασαβciβ denotes the spin operator, and ni ¼

P
σ c

†
iσciσ

is the density operator. PG ¼ Q
ið1 − ni↑ni↓Þ is the

Gutzwiller-projection operator enforcing a no-double-
occupancy constraint. hiji represents nearest-neighbor
(NN) bonding. Here, we set J ¼ 1 as the energy scale.
The parameter t and the doping concentration δ are set as
tuning parameters spanning the phase diagram.
To smoothly connect with the previously studied π-flux

state at half filling [31] and to compare energy with the
0-flux state at finite doping [37,38], we investigate the

Gutzwiller-projected MF states generated by the following
MF Hamiltonian:

H0
MF ¼

X

hijiσ
χijc

†
iσcjσ þ H:c:; ð2Þ

where χij ¼ �1. These states can be characterized by the
fluxes eiϕ ¼ Q

plaquette sgnðχijÞ through triangle and hexa-
gon plaquettes of the Kagome lattice. In this work, we
primarily focus on two types of fluxes: (1) the 0-flux states
having zero flux through all the triangles and hexagons
shown in Fig. 1(b); (2) the π-flux state having π flux
through the hexagons and zero flux through the triangles as
shown in Fig. 1(c). At half filling, both flux states after the
projection are QSL.While the former has a large spinon FS,
the latter is a U(1) Dirac QSL. Previous VMC studies [31]
showed that the π-flux state has the lowest energy among
all studied states.
The key point lying behind the present work is the

following SU(2)-gauge structure hidden in the projective
construction at half filling [40,41]. Let us perform the
following local SU(2)-gauge transformation Wi on the two
component spinor ψ i ¼ ðci↑; c†i↓ÞT :

� ci↑
c†i↓

�
→ Wi

� ci↑
c†i↓

�
: ð3Þ

At half filling, any two MFAnsätze connected by this local
SU(2)-gauge rotation label the same physical spin state
after projected into the single-occupance subspace, as the
spin operator Si keeps invariant under this gauge trans-
formation [40,41]. However, this many-to-one labeling is
absent once the system is doped away from half filling.
Consequently, the many states related by the gauge rotation
before projection can represent physical states with distinct
physical properties at finite doping. One may naturally raise
the following question: what is the lowest-energy state
among all those gauge-rotated π- or 0-flux states for the
system with very low doping? To answer this question, we
choose the local SU(2)-gauge rotation angles as variational
parameters, from which we construct an MF Hamiltonian
to generate the variational physical states by projection, for
energy minimization in both flux sectors.
Our trial wave functions are generated by the following

local SU(2)-gauge-rotated Bogoliubov–de Genes MF
Hamiltonian:

HMF ¼
X

ij

½ c†i↑ ci↓ �Wi

�
χij 0

0 −χji

�
W†

j

� cj↑
c†j↓

�
: ð4Þ

Here, the unrotated MF parameter χij on the NN bond hiji
for the π- and 0-flux states have been introduced above. We
set the on-site term χii to a uniform value χii ¼ χ0 as the
chemical potential term. The local SU(2) rotation matrixWi

FIG. 1. (a) A schematic representation of the Kagome lattice.
(b) The 0-flux state with χij ¼ 1 on each bond. (c) The π-flux
state with zero flux through triangles and π-flux through
hexagonals. Dashed lines indicate the χ ¼ −1 bonds.
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can be parameterized by the following three rotation angles,
αi, βi, and γi, as

Wi ¼
�

eiβi cos αi eiγi sin αi
−e−iγi sin αi e−iβi cos αi

�
: ð5Þ

Our trial wave function PGjΨMFfχ0; α; β; γgi now depends
on the set of variational parameters fαi; βi; γigi¼1;…;N

and χ0. Here, jΨMFfχ0; α; β; γgi is the MF ground state
of Eq. (4).
VMC results.—Weadopt a standardMonteCarlo approach

to simulate the variational statesPGjΨMFfχ0; α; β; γgi on the
Kagome lattice with size 3 × L × L and periodic boundary
condition, where the two adopted lattice sizes L ¼ 8 and
L ¼ 12 lead to consistent results. The numerical complexity
arising from optimizing a large number of variational
parameters is overcome by the stochastic reconfiguration
method [43]. We further reduce the number of SU(2) rotation
angles by restricting the parameters in the supercell with size
3 × 2 × 2. We have checked that increasing the size of the
supercell does not lead to a lower optimized energy (see the
Supplemental Material (SM) [44] for detail).
Our main results are summarized in the phase diagram

shown in Fig. 2(a), where we consider several t ranging
from 1=3 to 3 and several doping levels below 7% on the
Kagome lattice with L ¼ 8. Starting from the undoped
π-flux state, the lowest-energy state stays in the π-flux
sector until beat by the optimized states in 0-flux sector at a
finite doping concentration δc depending on t. For small
t ∼ 1=3, the gauge-rotated π-flux state is stable until the
doping concentration reaches δc ∼ 5%. While for large t,
a smaller doping is enough to drive the system away from
the π-flux sector, consistent with previous VMC studies at
J ¼ 0.4t [37,38]. To explore the possible finite size effect,
we also studied the models on L ¼ 12 lattice with 4 to 12

doped holes and found that the gauge-rotated π-flux state is
still the lowest-energy state for most of the cases at small
doping region.
The physical properties of the gauge-rotated π-flux phase

are mainly determined by the optimized SU(2) rotation
angles, which are provided in the SM [44]. Except for
the two parameter points in the small J and δ region of the
π-flux sector (black circles in Fig. 2), we find that the
optimized angle αi for both flux sectors are neither 0 nor π.
Consequently, the nonzero off-diagonal terms in the gauge-
rotation matricesWi defined in Eq. (5) bring about a singlet
pairing term HΔ ¼ −

P
ij c

†
i↑c

†
j↓½χijeiðβiþγjÞ cos αi sin αj þ

ði ⇄ jÞ� þ H:c: in HMF. Note that the gauge rotation
[Eq. (3)] as a unitary transformation does not change
the quasiparticle spectra [40,41] but only leads to enlarge-
ment of the unit cell. As a result, the superconducting
states generated here will have quasiparticle FSs simply
folded from those of the doped 0- or π-flux states before
the gauge rotation, as shown in Figs. 2(b) and 2(c).
Therefore, we have obtained here singlet pairing states
with finite Bogoliubov FS. Such SC states breaking trans-
lational symmetry with finite FS were pair-density-wave
states [45–59].
The optimized gauge-rotation angles in the π-flux sector

are complicated because all the fαi; βi; γig within the
supercell are nonzero and nonuniform, breaking the time
reversal symmetry (TRS), the lattice rotation, the inversion,
and the translational symmetries. The pairing and hopping
terms generated by the gauge rotations are generally
complex and are of the same order of magnitude, which
suggests a typical interband pairing state. More details of
the optimized gauge-rotation angles and the resulting
gauge-rotated MF Hamiltonian are provided in the SM
[44]. In spite of the complicated pairing and hopping
terms, the resulting MF Hamiltonian exhibits the finite
Bogoliubov FS shown in Fig. 2(b), which comprises two
nearly doubly degenerate small pockets folded from those
of the unrotated π-flux state.
At infinitesimal doping, the gauge-rotated π-flux state is

reasonably the lowest-energy VMC state due to the finite
energy difference between this state and other states
presented in the previous VMC study of the undoped case.
When the doping concentration becomes larger, besides the
gauge-rotated π- or 0- flux states, other competitive states
such as the holon Wigner crystal [36], the doped Z2 QSL
[34], various types of VBC states [37,38], and the uniform-
pairing states [7,60,61] should also be considered in the
VMC calculations. In Table I, we list the optimized
energies for part of the lowest-energy states we obtained
on the L ¼ 12 lattice, which suggests that in the small
doping region the gauge-rotated π-flux state has lower
energy than the other VMC candidates. We can see
the doped Z2 QSL [34] provides similar energy as the
gauge-rotated π-flux state because after optimization such
state actually flows back to the U(1) Dirac spin liquid

FIG. 2. (a) Phase diagram of the slightly doped t-J model on an
8 × 8 × 3 lattice. The black circles in the π-flux sector represent
metallic phase without pairing. (b) Nearly doubly degenerate
small FSs of the slightly doped π-flux state located around the
two folded Dirac points of undoped state. (c) Folded FSs of the
doped 0-flux state.
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(π-flux state) for all the cases we studied. In the 0-flux
sector, we find that the D-type VBC state has slightly lower
energy than the gauge-rotated 0-flux state. Another impor-
tant candidate, the holon Wigner crystal, is mimicked by
the charge density wave (CDW) Ansatz in the VMC
calculation. Restricted by the finite lattice size, we only
consider the four-hole doped L ¼ 12 system with 3 × 6 × 6
supercell. Though we observe the similar density distribu-
tion as the Wigner crystal, the VMC energy of this CDW
state is higher than the gauge-rotated π-flux state. We also
consider the uniform-pairing states with both the extended
s-wave and d-wave pairing parameters live on the nearest
and second nearest neighbor bonds, which also provide
higher energies in the small doping region. We considered a
more complete comparison of all the competing states on
the L ¼ 12 lattice, and the detailed VMC realization of
them is presented in the SM [44].
Singlet pairing with finite FS.—The singlet pairing with

Bogoliubov FS obtained here is distinct from conventional
superconductors. To reveal the physical properties of this
intriguing pairing state relevant to experiments, we shall
perform MF studies below toward the zero- and finite-
temperature behaviors of the system represented by the
optimizedHMF. Consequently, this pairing state is found to
be very exotic.
On one hand, the breaking of U(1)-gauge symmetry

leads to finite superfluid density as expected (see the SM
[44] for details), which will result in detectable Meissner
effect. On the other hand, the presence of the full FS causes
finite density of state that, in combination with the singlet-
pairing signature, makes this pairing state look like a
normal FL in the aspects of low lying quasiparticle and

spin excitations, as shown in Fig. 3 for the gauge-rotated
π-flux state. In the zero-temperature dI=dV curve for the
STM spectrum shown in Fig. 3(a), a finite zero-bias
conductance appears caused by the finite density of state
in comparison with the U-shaped curve for the s-wave SC
shown in the inset. Figure 3(b) shows that the specific heat
Cv ∝ T at T → 0, resembling the normal FL. Figure 3(c)
illustrates that the relaxation rate 1=T1T of the nuclear
magnetic resonance (NMR) saturates to a finite value at
T → 0, obeying a Korringa-law-like behavior for the FL,
different from the 1=T1T → 0 behavior for conventional
fully gapped (∝ e−Δ=T) or nodal (∝ T3) SC. Figure 3(d)
exhibits that the NMR Knight-shift K saturates to a finite
value for T → 0, independent of the orientation of the
exerted magnetic field, similarly to the Pauli-susceptibility
behavior for standard FL. This behavior is distinct from
the K → 0 behavior of conventional singlet SC with full
or nodal gap or the obvious magnetic field orientation
dependence of K for the triplet SC. Although both
the gauge-rotated π- or 0- flux states exhibit Bogoliubov
FS, the different doping dependences of the area enclosed
by their FSs can be distinguished by the angle-resolved
photoemission spectroscopy, which can also lead to differ-
ent behaviors such as the doping dependence of Cv=T.
Details of these MF studies are provided in the SM [44].
Discussion and conclusion.—Note that, starting with a

U(1) QSL at half filling, we have only considered the
gauge-rotation angles as variational parameters and neglect
the amplitude fluctuation of χij before the gauge rotation.

FIG. 3. Experiment-relevant quantities for the optimized
gauge-rotated π-flux state. (a) dI=dV ∼ V curve for the
STM. The inset is the dI=dV curve for the model with uniform
on-site s wave. (b) The specific heat Cv ∼ T. (c) The NMR
relaxation rate 1=T1T. (d) The NMR Knight-shift K as function
of T; the three colors stand for Kxx, Kyy, and Kzz, respectively.
The optimal gauge-rotation angles are obtained from parameter
setting t ¼ 0.5 and δ ¼ 2.08%.

TABLE I. Optimized energy of part of the candidates on the
model with t ¼ 0.5 ∼ 2 and δ ¼ 0.92% ∼ 2.78% on a 3 × 12 ×
12 lattice. A complete table with more candidate Ansätze can be
found in the SM [44].

δ ¼ 0.92% δ ¼ 1.85% δ ¼ 2.78%

t ¼ 2 0-flux −0.96 037ð2Þ −1.008 73ð3Þ −0.56 69ð3Þ
π-flux −0.971 05ð5Þ −1.011 97ð2Þ −1.052 38ð3Þ
Z2 QSL −0.971 06ð2Þ −1.011 96ð4Þ −1.052 31ð4Þ
VBC-D −0.960 66ð3Þ −1.009 21ð2Þ −1.057 10ð3Þ
CDW −0.9112ð3Þ / /

t ¼ 1 0-flux 0.928 94ð3Þ −0.946 80ð1Þ −0.964 08ð2Þ
π-flux −0.943 47ð2Þ −0.956 91ð2Þ −0.970 10ð4Þ
Z2 QSL −0.943 48ð3Þ −0.956 86ð4Þ −0.970 10ð3Þ
VBC-D 0.929 33ð2Þ 0.946 98ð2Þ −0.964 42ð2Þ
CDW −0.9104ð4Þ / /

t ¼ 0.5 0-flux −0.913 36ð4Þ −0.915 65ð3Þ −0.917 72ð3Þ
π-flux −0.929 67ð3Þ −0.929 39ð2Þ −0.928 28ð2Þ
Z2 QSL −0.929 65ð2Þ −0.929 36ð3Þ −0.928 27ð3Þ
VBC-D −0.913 67ð2Þ −0.915 88ð3Þ −0.918 08ð2Þ
CDW −0.9154ð2Þ / /
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Such a treatment is reasonable only at zero-doping limit.
For higher dopings, lower variational energy is generally
expected if we include the variation of the amplitude of χij.
The band structure of such improved state can be strongly
modified, i.e., a Hastings-type VBC order can gap out the
Dirac points [62]. We have briefly investigated the fate of
the Hastings-type VBC in the unrotated π-flux state and
found that it becomes visible when the doping concen-
tration is larger than δc ∼ 4%. Therefore, close to the zero-
doping limit, the Bogoliubov FS is more likely to survive.
Previous studies [63–67] have shown the survival of the

FS under the Gutzwiller projection, although some other MF
properties might be modified [68], such as the quasiparticle
weight. A similar phenomenon, namely the survival of the
FS under Gutzwiller projection, is also directly observed
for our projected gauge-rotated states by numerically
detecting the FS jump in the occupation-number distribution
of Bogoliubov quasiparticles in the momentum space (see
the SM for details [44]). Another concern about the stability
of the Bogoliubov FS obtained here under possible remnant
interactions among the Bogoliubov quasiparticles is
neglected in the VMC treatment. Indeed, the FSs shown
in Figs. 2(b) and (c) atisfy the relation εk ¼ ε−k as the
unitary SU(2)-gauge rotation adopted here maintains the
quasiparticle energy, which will suffer from the Cooper
instability under remnant interactions. However, note that the
two superconducting states obtained here break both the
TRS and the inversion symmetry [44]. Without the protec-
tion of these two symmetries [69], the relation εk ¼ ε−k
cannot survive such perturbations as the further variations
of fχij;Δijg after the gauge rotation, which can always
exist for finite doping. Consequently, the Bogoliubov FSs
obtained here should be stable against weak remnant
interactions among the quasiparticles.
Evidence of SC with Bogoliubov FS can also appear

in other contexts such as the Fulde-Ferrell-Larkin-
Ovchinnikov state induced in the magnetic field [70,71],
the cubic system with j ¼ 3=2 total angular momentum
degree of freedom [72], and some iron-based superconduc-
tors with spin-orbit coupling and interband pairing [73]. The
recently synthesized YPtBi multiband superconductor with
strong spin-orbit coupling [74,75] might also exhibit
Bogoliubov FS if it breaks the TRS [76]. While these
systems host similar normal FL-like quasiparticle excita-
tions as here, their spin excitations have different properties
from those of the singlet pairing state obtained here. In
summary, we propose a new way to obtain the Bogoliubov
FS: doping a U(1) QSL. The key point lies in the fact that the
local SU(2)-gauge rotation, which brings about SC to the
doped QSL, will not alert the quasiparticle energy, which is
different from doping a QSL with spinon FS [77]. Such
mechanismnot only applies to the dopedKagomeU(1)QSL
but also applies to other doped U(1) QSL, which could be a
promising way to obtain the new type of unconventional
gapless SC in strongly correlated electronic systems.
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