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Magnetic impurities embedded in a metal are screened by the Kondo effect, signaled by the formation of
an extended correlation cloud, the so-called Kondo or screening cloud. In a superconductor, the Kondo
state turns into subgap Yu-Shiba-Rusinov states, and a quantum phase transition occurs between screened
and unscreened phases once the superconducting energy gap Δ exceeds sufficiently the Kondo temper-
ature, TK . Here we show that, although the Kondo state does not form in the unscreened phase, the Kondo
cloud does exist in both quantum phases. However, while screening is complete in the screened phase, it is
only partial in the unscreened phase. Compensation, a quantity introduced to characterize the integrity of
the cloud, is universal, and shown to be related to the magnetic impurities’ g factor, monitored
experimentally by bias spectroscopy.
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Introduction.—One of the most fascinating manifesta-
tions of magnetic interactions in metals is the Kondo effect
[1], where a local spin interacts with a sea of noninteracting
electrons, to get there completely dissolved by quantum
fluctuations below the so-called Kondo temperature, TK .
This magic quantum spin vanish is accompanied by the
formation of the so-called Kondo cloud, as characterized by
the ground state correlation function

CðrÞ≡ hS⃗imp · s⃗ðrÞi; ð1Þ

with s⃗ðrÞ the electrons’ spin density at position r, and S⃗imp

the spin of the magnetic impurity, which we assume to be of
size Simp ¼ 1=2, typical in quantum dot devices. The
antiferromagnetic correlations in Eq. (1) have been inves-
tigated theoretically [2–19] and also attempted to be
measured experimentally by many [20–23]. They oscillate
fast in space, and are characterized by an exponentially
large length scale, the so-called Kondo scale, ξK ≈ vF=TK ,
with vF the Fermi velocity [24]. In D spatial dimensions,
apart from logarithmic corrections [8,9], the envelope of
CðrÞ decays as ∼1=rD at short distances, r < ξK , while it
falls off as ∼1=rDþ1 for r ≫ ξK. Simple estimates yield a
Kondo scale ξK as large as ∼1 μm in typical metals, a
distance comparable with the physical dimensions of
mesoscopic devices.
The antiferromagnetic correlations residing in this huge

Kondo cloud are, however, quite small, as signaled by the
sum rule [8,25]

Z
hS⃗imp · s⃗ðrÞi dDr ¼ −

3

4
κ; ð2Þ

with h…i referring to the ground state average, and κ ¼ 1 a
certain measure of quantum screening, introduced later.
Equation (2) just expresses that, after all, there is only a
single spin that is needed to form a singlet state with the
impurity, and that this conduction electron spin is smeared
within the Kondo volume, ∼ξDK . Entanglement entropy [26]
calculations and the study of entanglement witness oper-
ators [27] also corroborate this picture, and confirm that the
local spin’s entanglement, i.e., the Kondo cloud resides
within a distance ξK from the impurity. Although many
theoretical proposals have been put forward to measure the
Kondo cloud by now [5,9,28], the cloud remained elusive
for experimentalists for a very long time [20–23], and its
large extension has only been confirmed very recently via
Fabry-Pérot oscillations in a mesoscopic system [29].
In this work, we investigate the fate of the Kondo

compensation cloud in an s-wave superconductor. In a
superconductor, the superconducting gap Δ competes with
the Kondo effect, and prohibits screening of the magnetic
impurity for weak interactions, TK ≪ Δ. In this case, the
magnetic impurity spin remains free even at very small
temperatures, but it binds superconducting quasiparticles to
itself antiferromagnetically, amounting to discrete (singlet)
subgap electron and hole excitations [30], called the Yu-
Shiba-Rusinov (YSR) states [31–33]. Beyond a critical
magnetic coupling, i.e., for Δ=TK < ðΔ=TKÞc ≈ 1.1 [34], a
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first order quantum phase transition occurs [36], and the
subgap singlet excitation becomes the ground state, as
illustrated in Fig. 1. A spin Simp ¼ 1=2 impurity embedded
into a superconductor has therefore two quantum phases, a
screened singlet phase forΔ=TK < ðΔ=TKÞc, and a doublet
phase for Δ=TK > ðΔ=TKÞc [37–39].
Here we investigate the structure of the Kondo compen-

sation cloud in these two phases. Somewhat surprisingly,
we find that the superconductor does not destroy the Kondo
cloud even in the unscreened doublet quantum phase, but it
reduces the degree of compensation κ from its value κ ¼ 1
in the singlet phase to κ ¼ κðΔ=TKÞ < 1 in the doublet
quantum phase. We dub the corresponding fractional
compensation cloud as the YSR cloud. The fractional
compensation emerges as a result of the competition of
the Kondo screening length ξK and the superconducting
correlation length ξ and in the doublet phase the extension
of the cloud is the coherence length, ξ, rather than ξK . This
enormous extension of the YSR cloud is in agreement with
recent experiments on side-coupled superconducting quan-
tum dot devices, measuring the size of YSR states [40].
Compensation.—We first show that Eq. (1) is satisfied

with κ ¼ 1 in the singlet phase, Δ=TK < ðΔ=TKÞc. To
prove Eq. (1), we only need to exploit SU(2) symmetry and
the fact that the ground state jGi is a singlet, implying that
jGi is an eigenstate of the total spin operator S⃗T with zero
eigenvalue,

S⃗T jGi ¼
�
S⃗imp þ

Z
dD r s⃗ðrÞ

�
jGi ¼ 0: ð3Þ

Multiplying this equationby hGjS⃗imp… from the left andusing

S⃗imp · S⃗imp ¼ 3=4 yields immediately Eq. (2) with κ ¼ 1.
We now show that a similar relation holds even in the

doublet phase, but with κ < 1, defining the degree of
compensation. In the doublet phase, we have two
degenerate ground states, j⇑i and j⇓i. These two states
transform among each other upon the action of the total
spin operators as

S⃗T jαi ¼
X
β

1

2
σ⃗βαjβi; ð4Þ

with α and β referring to j⇑i and j⇓i, and σ the Pauli
matrices. Similar to the spin ST ¼ 0 case, we now multi-
ply this equation by hαjS⃗imp…, and average over α. On
the right-hand side, however, we can now use the
Wigner-Eckart theorem, according to which

hαjS⃗impjβi ¼ g
1

2
σ⃗αβ; ð5Þ

with g the g factor of the impurity spin. This immediately
yields Eq. (2) with

κ ¼ 1 − g: ð6Þ

For a free spin we have g ¼ 1, implying no compensa-
tion, κ ¼ 0. However, as we discuss below, for a spin
embedded into a superconductor, g becomes finite due to
quantum fluctuations, leading to a partial compensation
of the spin and a squeezed Kondo cloud.
Perturbation theory.—In the limit, Δ ≫ TK, perturba-

tion theory combined with a renormalization group
approach can be used to assess the origin of g. We consider
for that the Kondo model

H ¼ JS⃗imp · s⃗ð0Þ þHhost; ð7Þ
with J the local Kondo coupling, and s⃗ð0Þ ¼ 1

2
ψ†ð0Þσψð0Þ

the spin density at the origin, expressed now in terms of the
conduction electrons’ field operator, ψσðrÞ ¼

P
k e

ikr=ffiffiffiffi
V

p
ckσ. The term Hhost describes the superconducting

host in terms of the mean field BCS Hamiltonian,

Hhost ¼
X
k;σ

ϵk c
†
kσckσ þ

X
k;σ

ðΔc†k↑c†−k↓ þ H:c:Þ: ð8Þ

We consider a homogeneous superconducting gap, and
neglect any spatial dependence of Δ, generated by the
presence of the magnetic impurity [41].
To determine κ, we compute h⇑jSzimpj⇑i ¼ g=2 pertur-

batively in J. A straightforward calculation yields [42]

κ ¼ 1 − g ¼ j20
4
ln

�
Λ0

Δ

�
þOðj30Þ; ð9Þ

with Λ0 a bandwidth cutoff of the order of the Fermi
energy, and j0 ¼ Jϱ0 the usual dimensionless Kondo
coupling, defined by means of the local density of states
at the Fermi energy, ϱ0. Clearly, the compensation contains
a logarithmic singularity, which must be handled by
resumming the perturbation series up to infinite order.
We have performed this resummation in subleading (so-
called next to leading logarithmic) order by using the
multiplicative renormalization group (RG) [42], and
exploiting the invariance of the impurity contribution to
the free energy under the RG. This calculation yields the
expression

FIG. 1. Schematic “phase diagram” of the model at zero
temperature. When Δ > TK , the ground state is a doublet with
an asymptotically free spin decoupled from the superconductor,
while in the opposite limit, when Δ < TK , the ground state is a
many-body singlet.
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κ ¼ 1 − exp

�
1

2
j0 −

1

2
jðΔ=TKÞ

�
; ð10Þ

with jðΔ=TKÞ the renormalized exchange coupling,

jΔ ≈
1

lnðFΔ
TK
Þ − 1

2
ln ½lnðFΔ

TK
Þ� þ 1

4 lnðFΔ
TK

Þ
: ð11Þ

Here TK ¼ Λ0F
ffiffiffiffi
j0

p
e−1=j0 denotes the Kondo temperature

in the next to leading logarithmic approximation, with
F ≈ 2.5 determined numerically to fit the Kondo
temperature, defined as the half width of the Kondo
resonance [35]. In the so-called universal limit j0 → 0,
Λ0 → ∞, and TK ¼ finite, Eq. (10) becomes a universal
function, κ ¼ κðΔ=TKÞ.
Numerics.—To verify the above scenario and to deter-

mine the compensation κðΔ=TKÞ accurately, we carried out
detailed numerical simulations using numerical renorma-
lization group (NRG) [43,52] as well as density matrix
renormalization group (DMRG) [44,45] methods. In both
approaches, we can compute the ground state expectation
value of the local spin, extract the g factor from that, and
express the compensation κ as

κ ¼ 1 − 2h⇑jSzimpj⇑i; ð12Þ

in the unscreened phase. The results are presented in Fig. 2.
They show perfect agreement with each other [53], and also
with the analytical expressions, Eqs. (10) and (11). The
compensation right at the quantum phase transition is
around κc ≈ 0.28, thus quantum fluctuations screen approx-
imately one-third of the total spin, even in the doublet
phase. Notice that the RG expression for the compensation
in Eq. (10) and, correspondingly, the jump in the com-
pensation, remain the same in any spatial dimension D, as
also confirmed by our one-dimensional DMRG and dimen-
sion independent NRG calculations.

The buildup of finite compensation is accompanied by
the evolution of the screening cloud. We can directly
monitor this latter in one dimension with DMRG compu-
tations. In the absence of superconductivity, apart from an
oscillating factor ∼ cosð2kFxÞ, spin-spin correlations decay
as jCðxÞj ∼ ξK=x at short distances, x ≪ ξK, while they fall
off quadratically for x ≫ ξK, where jCðxÞj ∼ ðξK=xÞ2
[4,9,25,54]. The power law decay originates in both
regimes from electron-hole excitations.
In a superconductor, however, electron-hole excitations

of energy δE < 2Δ are forbidden. Correspondingly, the
power law behavior is suppressed beyond the associated
superconducting correlation length, ξ ¼ vF=Δ, where cor-
relations show an exponential decay, as also demonstrated
by perturbation theory (see Ref. [42]). The YSR phase
transition occurs right when the Kondo and coherence
lengths become approximately equal, ξ ≈ ξK . Thus the spin
becomes fully screened under the condition that the Kondo
compensation cloud fits into the coherence volume ∼ξD.
This behavior is clearly observed in our DMRG simu-

lations performed on a one-dimensional superconducting
lattice, with a Kondo impurity placed at its end (see Fig. 3).
In our simulations, we focused on the case of half filling,
and extracted the envelope function of CðxÞ from the value
of CðxÞ≡ hS⃗imp · s⃗ðxÞi at the even sites [55]. For Δ ¼ 0,
the envelope function shows the expected behavior of
CðxÞ ∼ 1=x and CðxÞ ∼ 1=x2 for small and large distances,
respectively. The presence of the superconducting gap
alters this behavior fundamentally, and induces an expo-
nential decay of the form, CðxÞ ∝ expð−2x=ξÞ, once x gets
larger than ξ.
These results can be generalized to any dimension. As

discussed in Ref. [56], one can reduce the Kondo problem
to a one-dimensional chiral Fermion problem in any
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FIG. 2. Compensation κ across the quantum phase transition as
a function of Δ=TK , for j0 ¼ 0.05. In the fully screened regime,
Δ=TK ≲ 1.1, κ remains 1, and it displays a universal jump of size
Δκ ≃ 0.719 at the quantum phase transition, followed by a
monotonous decrease in the partially screened regime. Blue
and yellow squares represent DMRG and NRG results, while
the solid line presents the theoretical result, Eqs. (10) and (11).
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FIG. 3. Envelope for the equal-time spin-spin correlation
function CðxÞ defined in Eq. (1) as a function of the distance
from the impurity spin in a one-dimensional chain, as computed
by DMRG. For Δ ¼ 0, the envelope function shows the expected
universal scaling in the near and far regions. For Δ ≠ 0, the
algebraic behavior turns into an exponential decay, CðxÞ ∝
expð−2x=ξÞ, with ξ ¼ vF=Δ the coherence length. We used a
chain length L ¼ 200, the Kondo temperature was fixed to
TK ¼ 0.1t, with t the hopping along the chain, which corre-
sponds to a dimensionless coupling, j0 ¼ 0.286. The associated
Kondo correlation length is ξK ≈ 20 lattice sites.
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dimension. The procedure of Ref. [56] can also be carried
out in a superconductor, and allows us to draw general
conclusions in any dimension. For distances below the
superconducting correlation length r < ξ the superconduct-
ing gap does not play a major role, and at short distances
r < ξK one therefore recovers the scaling CðrÞ ∼ 1=rD,
which follows from perturbation theory in j0. For ξK < r
and r < ξ, on the other hand, one should find a behavior
characteristic of a Fermi liquid, CðrÞ ∼ 1=rDþ1, similar to
the behavior of the spin-spin correlation function in a metal
[57]. CðrÞ seems to diverge at small distances, but its
divergence is cancelled by subleading (high energy) con-
tributions when r → 0. The asymptotic behavior of the
spin-spin correlation function in the Kondo cloud is very
similar to the spin-spin correlation function in a Fermi
liquid. In three dimensions one has hsðrÞsð0Þi∼ ½sinðkFrÞ−
kFr cosðkFrÞ�2=r6. The apparent ultraviolet logarithmic di-
vergency at the origin of the integral ∼

R
dr rD−1ð1=rDÞ is

regularized by the subleading terms. The scaling of CðrÞ is
only altered for r > ξ, where the gap of the superconductor
introduces an exponential cutoff, CðrÞ ∼ e−2r=ξ, as typical
in gapped systems.
Connection to experiments.—Our predictions could be

tested experimentally with a device sketched in Fig. 4. The
degree of compensation, in particular, can be measured by
investigating the magnetic splitting of an artificial atom
(quantum dot), attached to a superconductor, and placed in
a local field. To generate a local field and observe the
impurity’s g factor, we propose to attach a ferromagnetic
electrode to the quantum dot, and thereby create a local
exchange field Beff , as done in Ref. [58]. The strength of
this field can be tuned efficiently by shifting the quantum
dot’s level [58–61]. To establish the exchange coupling to
the superconductor, J, and to give rise to Kondo screening
[58,62–66], one could tunnel couple the dot to a super-
conductor. Finally, a third, weakly coupled normal elec-
trode could be used to perform bias spectroscopy [40] and
to measure the exchange field induced splitting from the co-
tunneling spectrum [60,61], and thus extract the g factor.
In the regime Δ≳ 1.1TK ≫ Beff , corresponding to a

weakly split doublet ground state, the Zeeman splitting
between the doublet states can be extracted from the

co-tunneling signal. The ground state Zeeman splitting is
supposed to remain finite and directly proportional to g on
the doublet side of transition, while it must vanish once the
transition is crossed, and the ground state turns into a
singlet.
We should emphasize that, although the proposed

experiment is quite complex, all elements of the setup in
Fig. 4 have been demonstrated experimentally.
Conclusions.—We have investigated the fate of the

Kondo cloud of a magnetic impurity embedded in a
superconducting host, and have shown that the impurity’s
spin remains partially compensated by quantum fluctua-
tions even in the superconducting phase. The extension of
the fractional compensation cloud is the superconducting
correlation length, ξ. The degree of compensation displays
a universal jump at the parity changing transition point, and
is a universal function of Δ=TK , which we determined
analytically and numerically, and which can be accessed
experimentally by a proposed experimental setup.
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