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We investigate the occurrence of n-fold exceptional points (EPs) in non-Hermitian systems, and show
that they are stable in n − 1 dimensions in the presence of antiunitary symmetries that are local in parameter
space, such as, e.g., parity-time (PT) or charge-conjugation parity (CP) symmetries. This implies in
particular that threefold and fourfold symmetry-protected EPs are stable, respectively, in two and three
dimensions. The stability of such multofold exceptional points (i.e., beyond the usual twofold EPs) is
expressed in terms of the homotopy properties of a resultant vector that we introduce. Our framework also
allows us to rephrase the previously proposed Z2 index of PT and CP symmetric gapped phases beyond the
realm of two-band models. We apply this general formalism to a frictional shallow water model that is
found to exhibit threefold exceptional points associated with topological numbers �1. For this model, we
also show different non-Hermitian topological transitions associated with these exceptional points, such as
their merging and a transition to a regime where propagation is forbidden, but can counterintuitively be
recovered when friction is increased furthermore.
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Since the discovery of graphene, Dirac points have been
revealed to be a ubiquitous property of various two-dimen-
sional (2D) materials. The existence of such twofold
degeneracies is enforced by symmetries [1,2], and their
stability can be expressed with winding numbers of the
phase of thewave functions [3–5]. Similarly, non-Hermitian
Hamiltonians may exhibit degeneracy points of their com-
plex eigenvalues, called exceptional points (EPs). The quest
for EPs, their topological properties and their physical
implications, stimulated tremendous efforts in the past
few years [6–15]. At an EP, the number of degenerated
eigenvalues (the algebraic multiplicity μ) is generically
larger than the number of eigenvectors (the geometric
multiplicity) leaving the Hamiltonian non-diagonalizable.
Quite remarkably, twofold EPs (EP2s) do not require any
symmetry to be stable in two dimensions, and this stability
can be expressed in terms of a winding number [8] asso-
ciated with their complex eigenvalues [16]. This is however
not the case for multifold exceptional points EPμs. Those
were indeed shown to be unstable in two dimensions [16],
although stable in higher D ¼ 2μ − 2 dimension [6,17], so
that EPμs beyond μ ¼ 2 have remained overlooked. Still, a
few examples of multifold EPs were surprisingly reported
recently [18–20], including in PT-symmetric systems [21].
This asks the crucial question of the conditions of existence
of multifold EPs, in particular in dimensions D ≤ 3, their
robustness and the role of symmetries.
Here we answer this question by showing that μ-fold EPs

have a codimension μ − 1 provided certain antiunitary

symmetries are satisfied, meaning that they appear as iso-
lated points in μ − 1 dimensions. The relevant symmetries
consist in parity-time (PT) symmetry, charge-conjugation
parity (CP) symmetry, and their generalizations, called
pseudo-Hermiticity (psH) and pseudo-chirality (psCh), that
classify non-Hermitian EPs [13,22]. It follows that three-
fold and fourfold EPs are stable in two and three dimen-
sions, respectively, when such symmetries apply. Then, we
propose a topological characterization for symmetry-
protected EPμs through the homotopy properties of a
resultant vector that we introduce. Finally, we illustrate
our theory by discussing a frictional fluid model that
exhibits several EP3s with opposite windings. These EPs
constitute a threshold beyond which the propagation of all
the eigenmodes vanishes in a certain range of wavelength,
but can counterintuitively be recovered when increasing
friction furthermore.
To investigate μ-fold EPs, we focus on μ × μ matrices

without loss of generality, because μ-fold degeneracies are
described by a μ × μ effective Hamiltonian H. We consider
a parametrization HðλÞ with λ ∈ RD of such Hamiltonians.
The degeneracies of their eigenvalues EðλÞ are generically
EPs, since arbitrary non-Hermitian matrices require
fine-tuning to be diagonalizable at the degeneracy point
[23]. Therefore, looking for μ-fold EPs essentially amounts
to searching for the conditions such that the charac-
teristic polynomial PλðEÞ≡ det½HðλÞ − E� ¼ anðλÞEn þ
an−1ðλÞEn−1 þ � � � þ a1ðλÞEþ a0ðλÞ has μ-fold multiple
roots.
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At an EPμ of energy E0, PλðEÞ and its μ − 1 successive

derivatives PðjÞ
λ ðEÞ≡ ∂jPλ=∂Ej must vanish at E ¼ E0.

This property is encoded in the zeros of the so-called
resultant RP;PðjÞ ðλÞ. The resultant of two polynomials
P1ðEÞ and P2ðEÞ is an elementary concept in algebra
[24]. It reads RP1;P2

≡ det SP1;P2
, where SP1;P2

is the
Sylvester matrix of P1 and P2. Importantly, this quantity
vanishes if and only if the two polynomials P1 and P2 have
a common root. Actually, we demonstrate (see the
Supplemental Material [23]) that a polynomial PðEÞ of
degree μ has a μ-fold multiple root if and only if the
resultants of its successive derivatives RPðj−1Þ;PðjÞ vanish. Put
formally,

μ × μ non-Hermitian matrices
HðλÞ have an EPμ at λ ¼ λ0

⇔
RPðj−1Þ;PðjÞ ðλ0Þ ¼ 0

for j ¼ 1…μ − 1:
ð1Þ

RPðj−1Þ;PðjÞ ðλÞ is in general a complex-valued function of
λ. The equivalence (1) thus yields 2ðμ − 1Þ constraints to be
satisfied, which gives the codimension of an EPμ in the
absence of symmetry, in agreement with [6,17]. Note that
the usual EP2s are defined by RP;P0 ðλ0Þ ¼ 0, where
RP;P0 ðλÞ is proportional to the discriminant Δ of the
characteristic polynomial. Since Δ is in general a complex
function of λ, the stability of EP2s can be expressed by the
winding of arg½RP;P0 ðλÞ� along a close circuit around λ0 in a
2D parameter space [16].
As we discuss now, antiunitary symmetries that are local

in parameter space, have important consequences. First,
they decrease the codimension of the EPs. Second, they
make the discriminantΔ real. Thus sgnðΔÞ becomes a well-
defined quantity that one can use to characterize a sponta-
neous symmetry breaking. The winding of argðΔÞ becomes
ill defined, but we shall see that another natural homotopy
property can be assigned to multifold EPs.
The symmetries we consider are

PT symmetry UPTHðλÞU−1
PT ¼ H�ðλÞ; ð2aÞ

pseudo-Hermiticity UpsHHðλÞU−1
psH ¼ H†ðλÞ; ð2bÞ

CP symmetry UCPHðλÞU−1
CP ¼ −H�ðλÞ; ð2cÞ

pseudo-chirality UpsChHðλÞU−1
psCh¼−H†ðλÞ; ð2dÞ

where � stands for complex conjugation, † stands for
Hermitian conjugation, and the U’s are unitary operators.
The consequences of these symmetries on the existence of
EPs are readily obtained from the characteristic polynomial
that must fulfill

PλðEÞ ¼ det½UHðλÞU−1 − E�: ð3Þ
Let us first proceed with PT symmetry (2). Then, Eq. (3)

implies PλðEÞ ¼ a�nðλÞEnþa�n−1ðλÞEn−1þ� � �þa�1ðλÞEþ
a0ðλÞ�, so that a�l ðλÞ ¼ alðλÞ. All the coefficients alðλÞ
must therefore be real. Thus, the resultants RPðj−1Þ;PðjÞ ðλÞ are
real too. This is due to the fact that the elements of the
Sylvester matrix SPðj−1Þ;PðjÞ are essentially the coefficients al
[multiplied adequately by numbers of the form nðn −
1Þ � � � ðn − jþ 1Þ due to the j successive derivatives]
[24]. The reality of the resultants implies that the number
of conditions in Eq. (1) to have an EPμ reduces to μ − 1. By
definition, the codimension of a PT-symmetry protected
EPμ is therefore μ − 1.
Importantly, this codimension remains μ − 1 for any of

the symmetries introduced in Eq. (2). This is obvious for
pseudo-Hermiticity (2b), since taking the transpose of H
leaves invariant the determinant in Eq. (3). The case of CP
symmetry can be mapped onto the PT-symmetric one by
the transformation H → −iH, that does not change the
codimension of the degeneracies. Finally the pseudo-chiral
case is deduced from the CP-symmetric one by invariance
of Eq. (3) by taking the transpose of H. One can finally
rephrase this result as μ-fold complex degeneracies of a
μ × μ Hamiltonian satisfying one of the local antiunitary
symmetries (2) appear as “defects” of dimension d in a D-
dimensional λ-parameter space such that

codimðEPμÞ≡D − d ¼ μ − 1: ð4Þ

Moreover, for each symmetry (2), the resultants
RPðj−1Þ;PðjÞ are real (see Ref. [23]), consistently with the μ −
1 constraints (1) to be satisfied to get a symmetry-protected
EPμ instead of 2ðμ − 1Þ. The reality of the resultants
naturally generates a resultant vector R̃ of components
RPðj−1Þ;PðjÞ , that maps the λ space of parameters to Rμ−1.
When the dimension of the λ space is μ − 1 (for instance,
after fixing some of the parameters), the homotopy proper-
ties of the map λ → R̃=jR̃j can be used to characterize
the EPμ.
In fact, a similar construction can be done from different

resultants, so that another resultant vector, R, can be
introduced. Indeed, the existence of an EPμ imposes
resultants between other derivatives of PðEÞ to vanish as
well, and, in particular,

RP;PðjÞ ðλ0Þ ¼ 0 with j ¼ 1…μ − 1: ð5Þ

Actually, such a constraint, to be compared with Eq. (1), is
also a necessary and sufficient condition for an EPμ to
exist, at least for μ ¼ 2, 3, and 4 [23]. It turns out that
those resultants are either real or purely imaginary. It is
thus natural to define the resultant vector R from its
components
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Rj ≡
� RP;PðjÞ –PT and psH

ð−iÞnðn−jÞRP;PðjÞ –CP and psCh
ð6Þ

that depend on the symmetry, and where the coefficient
ð−iÞnðn−jÞ guarantees the reality of Rj.
The two resultant vectors we have introduced have the

same first component R1, which is proportional to the
discriminant Δ of the characteristic polynomial PλðEÞ of
degree n as RP;P0 ðλÞ ¼ ð−1Þnðn−1Þ=2anðλÞΔðλÞ. The vanish-
ing of the discriminant at a given λ0 indicates the existence
of at least two roots of Pλ0ðEÞ. In the presence of a
symmetry (2), the discriminant is also a real quantity, since
both RP;P0 and an are always real. Its sign (or equivalently
that ofR1) is therefore well defined and turns out to encode
crucial properties about the complex eigenenergies Ej. For
instance, it is well known that for a polynomial of degree
n ¼ 2, Δ > 0 comes along with distinct real roots, while
Δ < 0 indicates a pair of complex conjugated roots. These
two behaviors are separated by a critical point Δ ¼ 0 where
the gap separating complex energy bands closes. More
generally, a change in the number of complex conjugated
roots is a property of the sign of the discriminant that
generalizes beyond n ¼ 2 [23]. One can thus use signðΔÞ
as a Z2 index to distinguish two different regimes for non-
Hermitian Hamiltonians of arbitrary size that satisfy one of
the symmetries (2). The cases n ¼ 2 and n ¼ 3 are
presented in Table I. Such an index encompasses the
previously proposed topological invariants given by
sgnðdetHÞ [sgnðdet iHÞ] for 2 × 2 PT (CP) symmetric
Hamiltonians [25–27].
It is worth pointing out that a change of signðΔÞ reveals

that the symmetry (2) under consideration is spontaneously
broken. Let us recall this notion in PT-symmetric systems
[28]. Consider Hjψi ¼ Ejψi, then U−1

PTκjψi is also an
eigenstate ofH with eigenvalue E�, where κ is the complex
conjugation operator. If U−1

PTκjψi is proportional to jψi,
then jψi is an eigenstate of the PT operator, and the
eigenenergies are real. In the other case, jψi is not an
eigenstate of U−1

PTκ and the eigenenergies come by pairs
ðE;E�Þ. PT symmetry is then said to be spontaneously

broken: it still holds at the level of the Hamiltonian, but not
at the level of the eigenstates. The same reasoning applies
to CP-symmetric and pseudochiral Hamiltonians, where
eigenenergies come by either by pairs ðE;−E�Þ or are
purely imaginary. In any case, the spontaneous symmetry
breaking is accompanied with a change of sign of the
discriminant that governs the complex nature and the
pairing of the eigenvalues.
Symmetry-protected multifold EPs are special points

where the symmetry is spontaneously broken, since they
also demand the vanishing of the other components
Rj ¼ 0. From a geometrical point of view [13,27,29,30],
the solutions λ of each equation RjðλÞ ¼ 0 define a
“manifold” Mj of dimension D − 1 in parameter space
of dimensionD (i.e., codimension 1). Thus, the coordinates
λ0 of EPμs define a space that consists in their mutual μ − 1
intersections. For instance, in D ¼ 2 dimensions, M1 and
M2 consist in curves in a plane, and their mutual
intersections are points that correspond to EP3s.
Importantly, such intersections are generically robust to
perturbations. Let us illustrate this point on a concrete
model, the rotating shallow water model with friction.
The linearized rotating shallow water model describes

waves propagating in a thin layer of fluid in rotation. It is
currently used to describe atmospheric and oceanic waves
over large distances where the Coriolis force, encoded into
a parameter f, is relevant [31]. We consider a non-
Hermitian version of this model that reads HΨ ¼ EΨ with

H ¼

0
B@

iγx if kx
−if iγy ky
kx ky iγN

1
CA; Ψ ¼

0
B@

δux
δuy
δh

1
CA ð7Þ

with δux and δuy the small variations of the horizontal fluid
velocity, δh a small variation of the fluid’s thickness, kx and
ky the in-plane wave numbers, γx and γy the Rayleigh
friction terms, and γN the Newtonian friction. The com-
petition between the two friction terms plays, for instance, a
crucial role in the phenomenon of superrotation [32].
Actually, this minimal model equivalently describes active
fluids where the thickness field h is formally replaced by a
pressure field. [33] In that context, it was shown that the γ
terms can also be negative, thus allowing for gain [34]. We
now show that the friction terms generate symmetry-
protected EP3s.
Assuming isotropic friction γx ¼ γy ≡ γR, the model

remains rotational symmetric and can thus be simplified
by fixing a direction (say ky ¼ 0). Moreover, any choice of
γR can be reabsorbed in γN up to a global shift of the
spectrum, that does not affect the existence of degeneracies,
as H ¼ γRI þ H̃ with

H̃ ¼

0
B@

0 if kx
−if 0 0

kx 0 iγ

1
CA; ð8Þ

TABLE I. Properties of the eigenvalues Ei of 2 × 2 and 3 × 3
non-Hermitian matrix as a function of the sgnΔ of its character-
istic polynomial detðH − EÞ of degree n, in the presence of
symmetries (2).

Degree n sgn Δ PT=psH CP=psCh

2
þ1 Ei ∈ R, E1 ≠ E2 E1 ¼ −E�

2

0 E1 ¼ E2 E1 ¼ E2

−1 E1 ¼ E�
2 Ei ∈ iR, E1 ≠ E2

3
þ1 Ei∈R, E1≠E2≠E3 E1 ¼ −E�

2 and E3 ∈ iR
0 E1 ¼ E2 and E3 ∈ R E1 ¼ E2 and E3 ∈ iR

−1 E1 ¼ E�
2 and E3 ∈ R Ei ∈ iR, E1 ≠ E2 ≠ E3
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where γ ≡ γN − γR. This matrix satisfies CP symmetry (2c)
with UCP ¼ diagð1; 1;−1Þ, and one thus expects EP3s of
codimension 2, according to the relation (4). Since the
parameter space has a dimension D ¼ 3, with
λ ¼ fkx; f; γg, the set of EP3s must consist in a manifold
of codimension 2, that is a line. For this specific model, the
equation of this line can be derived explicitly from
R1ðλ0Þ ¼ 0 and R2ðλ0Þ ¼ 0, which yields γ0 ¼ �3

ffiffiffi
3

p
f0

and k0 ¼ �2
ffiffiffi
2

p
f0. Geometrically, this line of EP3s cor-

responds to the intersection of the two spacesM1 andM2,
each of codimension 1. M1 and M2 are thus surfaces in
three dimensions [Fig. 1(a)], and lines in two dimensions
[Figs. 1(b) and 1(c)].
Remarkably, the spaceM1 ∩ M2 of EP3s correspond to

a fold of M1. Similar singular points to that shown in
Figs. 1(b) and 1(c) were found in other models [18,19].
This suggests a quite fundamental property of EP3s, that
can be addressed within catastrophe theory which classifies
the possible kinks of curves and thus establishes their
topological stability [35]. Intuitively, such a singular shape
can be traced back to the third-order characteristic poly-
nomial PλðEÞ ¼ 0, since cubic curves are known as a basic
example that displays such a catastrophe when the three
roots coincide. To characterize more precisely this singu-
larity, we use the machinery of catastrophe theory and

compute a list of invariants (called corank, codimension,
and determinacy) that classify the catastrophe. Following
Refs. [35,36], we find a corank of 1, a codimension of 1,
and a determinacy of 3, which identifies EP3s as a fold of
M1. This is the simplest fundamental catastrophe in the
classification of catastrophe theory.
Before characterizing in more details the robustness of

the EP3, let us first comment on the original physical
behaviors revealed in Fig. 1. Indeed,M1 indicates a change
of sign of the discriminant, and thus, according to Table I, it
denotes a transition between complex eigenvalues (Δ > 0)
and purely imaginary eigenvalues (Δ < 0), which, in our
case, all have the same sign which is fixed by sgnðγÞ. The
eigenvalue spectrum of Eq. (8) is shown in Fig. 2. It follows
that the Δ < 0 domain corresponds to a regime where all
the eigenmodes are fully evanescent (for γ > 0) and
thus where propagation is prohibited. Quite remarkably,
while a first propagating → nonpropagating transition
happens when increasing friction, an even more striking
nonpropagating → propagating second transition
occurs when increasing dissipation furthermore. In those
phase diagrams, the EP3 appears as the threshold beyond
which such transitions exist.
One can characterize the stability of symmetry protected

EPs furthermore by using the topological properties of the
resultant vectorR ∈ Rμ−1 introduced above. For an EP3, it
defines a map R=jRj∶R2nfλ0g → S1 whose homotopy
properties are encoded into the integer-valued winding
number

W3 ¼
1

2π

I
Cλ

1

kRk2
�
R1

∂R2

∂λα −R2

∂R1

∂λα
�
dλα; ð9Þ

where the close circuit Cλ surrounds the EP3 and where an
implicit sum is taken over α ¼ f1; 2g. It is worth noticing
that, in lattice systems, M1 and M2 are necessarily closed
loops in the 2D Brillouin zone, so that their intersections
come by pairs with opposite W3’s, which can be seen by a
straightforward extension of the doubling theorem by

kx

2

γ

f

EP3

(a)

γ

f

0

EP3

Δ < 0

k0 /f0

0 /f0

0
kx /f

Δ > 0

2

1

(c)(b)

Δ < 0

> 0

f0 /k0

0
0

/kx

f

kx

0 /k0

EP3
2

1

FIG. 1. EP3s (yellow) of the frictional shallow water model in
3D (a) and 2D (b),(c) parameter spaces. Those points result
from the intersection of the surfaces M1 and M2 each of
codimension 1.

kx kx kx

γ
3 3f0

Δ < 0

ReE
ImE

ReE
ImE

ReE
ImE

FIG. 2. Complex dispersion relation EðkÞ of the shallow water
model (8) for different values of γ. An EP3 appears at the critical
value γ0 ¼ 3

ffiffiffi
3

p
f for an arbitrary f and its eigenfrequency is

found to be E0 ¼ iγ0=3. Beyond this point, the discriminant Δ of
the characteristic polynomial of H̃ becomes negative over a finite
domain of wavebnumbers, where the three eigenmodes are fully
damped.
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Nielsen and Ninomiya [37,38] as recently generalized for
non-Hermitian systems without symmetry [16].
The invariant W3 is the winding number of the relative

angle between R1 and R2. For the frictional shallow water
model, its value is shown in Fig. 3(a). It turns out that in this
model, EP3s come by pairs W3 ¼ �1 at kx ¼ �k0. This
indicates that such pairs may possibly merge and annihilate
each other if one moves them, similarly to Dirac and Weyl
points in semimetals [39–42]. Since the position of the
EP3s is fixed in the isotropic case, a mechanism involving
their motion necessarily breaks rotational symmetry. This
can be achieved by considering now γx ≠ γy, as shown in
Fig. 3(a) where one pair (γN=f > 0) get closer while the
other pair (γN=f < 0) is pulled away. When increasing γx
furthermore, the points of the pair at γN=f > 0 finally
merge. Surprisingly enough, a new domain of nonpropa-
gating waves (Δ < 0) emerges for γN < 0 [see Fig. 3(b)]. A
similar analysis can be carried out from the other resultant
vector R̃ introduced above, but its winding number is
found to be zero for that model.
More generally, multifold (μ⩾3) symmetry-protected

EPs can be characterized by the homotopy properties of
their resultant vectors R (or R̃). Let us fix d ¼ 0, so
that the EP is an isolated point λ0 ∈ Rμ−1, according to
Eq. (4). Then the resultant vector defines the map
R=jRj∶Rμ−1nfλ0g → Sμ−2 whose degree [43] Wμ ≡
degR ∈ Z is well defined and reads [44]

Wμ ¼
X
λi

sgn

�∂Rj

∂λp
�
jRðλiÞ¼R0

; ð10Þ

where R0 is an arbitrary point where the Jacobian matrix
(∂Rj=∂λp) does not vanish. This homotopy invariant is a
topological property of multifold symmetry-protected EPs.
The expression (9) of the winding number W3 for EP3s is
the simplest example of such invariants.

Our analysis opens various novel perspectives in the
control of topological properties of non-Hermitian systems.
In future works, it could be interesting to investigate
symmetry-protected EP4s that should appear in three-
dimensional parameter spaces, and whose topological
charge W4 takes the form of a wrapping number of the
resultant vector

W4 ¼
1

4π

I
Sλ

R

kRk3 :
�∂R
∂λα ×

∂R
∂λβ

�
dλα ∧ dλβ: ð11Þ

In particular, this suggests the existence of stable non-
Hermitian versions of 3D Dirac points in sharp contrast
with both Hermitian 3D Dirac points and non-Hermitian
Weyl points that were both found to be unstable.
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