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Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton
polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic
microcavities with momentum-dependent transverse-electric—transverse-magnetic splitting of the optical
modes, the excitations’ dispersions are predicted to be strongly anisotropic, which is a consequence of the
synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths
for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the
collective excitations in a high-density optically trapped exciton-polariton condensate, we observe
excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the
interaction constants for polaritons of the same and opposite spin and map out the characteristic spin
textures in an interacting spinor condensate of exciton polaritons.
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Introduction.—Exciton polaritons (polaritons herein) are
quasiparticles formed by excitons strongly coupled to
confined photons, typically in a semiconductor optical
microcavity. As interacting bosons, they form 2D non-
equilibrium condensates analogous to Bose-Einstein
condensates of ultracold atoms at sufficiently large particle
densities above the phase transition threshold [1-4].
Furthermore, polaritons possess a spin degree of freedom
inherited from optically active excitons coupled to photons
[5-7]. Polariton spin has two allowed integer projections on
the cavity growth axis, o, making a polariton condensate
effectively a two-component (spinor) gas described by a
pseudospin parameter [1,8].

Polaritons interact through their excitonic components
[6,9] with a spin-dependent strength [7,10—-12]. The inter-
action strengths for polaritons of the same (triplet) a; and
opposite (singlet) a, spin are related as |a,| < a; [7,9,13].
Moreover, momentum-dependent transverse-electric—trans-
verse magnetic (TE-TM) splitting of the optical modes of
the microcavity [14] and optical anisotropy (linear bire-
fringence) of the cavity create an effective magnetic field,
which affects the polariton dynamics in the low-density
regime, below the condensation threshold via the photonic
component of the quasiparticles [15,16], similar to other
optical systems [17,18]. In the high-density regime, above
the condensation threshold, this synthetic field affects the
condensate pseudospin dynamics [19-22] in addition to the
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effect of spinor polariton-polariton interactions. As a result,
the single-particle dispersion of the polaritons in the low-
density regime, as well as the dispersion of the collective
excitations [23] of the condensate, are predicted to be
strongly anisotropic [24-26]. Namely, the dispersion
branches cross in one of the directions in the 2D momen-
tum space at the so-called diabolical points, forming
characteristic Dirac cones. The characteristic monopolar
pseudospin texture around these crossing points in momen-
tum space can be described in terms of an effective Rashba-
like non-Abelian gauge field [25-27]. Studies of such
gauge fields were previously limited to ultracold atomic
Bose-Einstein condensates [28]. Observation of a synthetic
(artificial) gauge field for polaritons in anisotropic micro-
cavities offers the possibility to study topological phases of
matter [29-31] and analog physics in optical systems [32].
However, despite the experimental progress in mapping
the nontrivial spin textures in the single-particle (linear)
regime [27], the predicted behavior of collective excitations
in the interaction-dominated (nonlinear) regime above the
condensation threshold has not been confirmed to date
[33-36].

In this Letter, we observe the dispersion of collective
excitations of a linearly polarized high-density polariton
condensate in an optical trap. By performing polarization-
resolved photoluminescence tomography, we detect the
excitation branches in momentum space and observe a clear
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asymmetry in the directions parallel and perpendicular to
the cavity anisotropy axis. Moreover, we determine the
triplet and singlet interaction strengths a; , and extract the
spin textures and synthetic magnetic gauge field distribu-
tion in the nonlinear regime.

Experimental setup.—We use an ultrahigh-quality GaAs-
based microcavity cooled down to ~4 K using a continu-
ous-flow liquid helium cryostat. The very narrow linewidth
of the polariton emission arising from the long cavity
photon lifetime of > 100 ps in this sample [37,38] enables
resolution of the non-negligible anisotropy of the polariton
dispersion [27]. Off-resonant excitation of the sample with
a continuous-wave laser beam, shaped by a conical lens
into a ring of 45 ym in diameter, creates a round “box”
optical trap [39,40] for polaritons. This trapping geometry
minimizes the overlap of polaritons with the excitonic
reservoir. We record the photoluminescence spectra in 2D
momentum space by translating the imaging lens with
respect to the monochromator slit. Polarization sensitivity
is achieved by employing a half wave plate and a linear
polarizer in the detection path, enabling us to record the
spectra in four linear polarizations bases: horizontal and
vertical and diagonal and antidiagonal with respect to the
laboratory frame of reference. The experiments are per-
formed on a region of the sample corresponding to a
small, positive exciton-photon detuning of A = (2.70 +
0.21) meV and the excitonic Hopfield coefficient X3~
0.585, which defines the excitonic fraction of the polariton.
Further details of the experiment can be found in the
Supplemental Material [41].

Low-density regime.—Polariton eigenstates in the
low-density limit can be described by a single-particle
Hamiltonian in a circular polarization basis [25,27]:

( erp(k) %e_i"’ — pk? e~k ) _—

Selv — pk? il erp(k)

where ¢ p is the lower-polariton dispersion extracted from a
coupled-oscillator model, f is the TE-TM splitting param-
eter, and Q is the cavity anisotropy constant. The source of
Q is the birefringence, which is caused by the small residual
strain of the full multilayer structure [42-45]. The wave
vector can be expressed as k = k(cos 8y, sin0;), with 0
denoting the in-plane propagation angle. The angle ¢
defines the anisotropy axis that depends on the sample
orientation. By diagonalizing the Hamiltonian, one obtains
two dispersive, linearly polarized eigenstates. The cavity
anisotropy, €2, breaks the cylindrical symmetry of the TE-
TM splitting, resulting in both energy and polarization
splitting at k = 0, as shown in Figs. 1(a),(c),(d). The two
dispersion branches diverge in the direction perpendicular
to the anisotropy axis (k,), but cross in the direction
parallel to it (k). The crossing point occurs at kﬁ =
\/Q/(2), where the effects due to TE-TM splitting and
optical anisotropy cancel each other [Fig. 1(d)].
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FIG. 1. Polariton dispersion in the low-density regime.
(a) Energy splitting between the polariton eigenstates, calculated
from Eq. (1), with the cross sections in the directions parallel
(solid line) and perpendicular (dotted line) to the anisotropy axis.
(b) Cross section of the Stokes vector component S; at the
constant energy E = 1.60154 eV in the measurement (k,,k,)
and anisotropy (k|, k) frames of reference. (c) Polariton eigen-
states and (d) their energy splitting extracted from the measured
dispersions in the directions k; and k,. Solid lines are the
model fits.

To apply this model to the experimental data, we
fit the polarization-resolved spectra for each wave vector
with a Lorentzian function and extract the energy of the
eigenstate from the spectral peak. Subsequently, by
fitting the measured dispersions with the eigenvalues
of Eq. (1), as shown in Fig. 1(c), we find the values
= (14.89 +0.92) peV um?, Q= (28.1£2.2) ueV,
and ¢ = —15° Hence, the crossing point occurs at
kﬁ =0.971 ym™', and kH is —15° from the -+x axis [see
the orientation of the frames of reference in Fig. 1(b)].
These measured parameters are essential for the analysis of
the collective excitations in the high-density regime.

For each of the eigenstates, we also extract two compo-
nents of the Stokes vector, S;, S,, which correspond to the
polarization state or in-plane pseudospin of the polaritons.
They are calculated from the polarized photoluminescence
intensities I using the formulas S, = (I — Iy)/(Iy + Iy)
and S, = (Ip —14)/(Ip +14). An example of the ex-
tracted texture of the §; component is presented in
Fig. 1(b) and is consistent with the previous measurements
in high-quality GaAs-based microcavities [27]. This is a
typical texture arising from TE-TM splitting, which is the
dominant effect at large k > kﬁ. The full in-plane pseudo-
spin textures of the single-particle eigenstates are shown in
the Supplemental Material [41].

Condensate excitations.—By increasing the pump power
above the condensation threshold, we create a high-density,
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single-mode condensate in the Thomas-Fermi regime
[39,46], formed in an optically induced potential trap.
The condensate emission is highly polarized, with 95% of
linear polarization oriented parallel to the anisotropy angle
@ = —15°. A similar pinning of the condensate polarization
to a given direction in the sample is routinely observed in
different types of samples [47-51] and is not a signature of
the expected stochastic buildup of polarization due to
spontaneous symmetry breaking [52]. Here, we provide
strong evidence that the pinning of the condensate polari-
zation arises from the optical anisotropy of the cavity. This
effect is undetectable in low-quality samples, where the
anisotropic splitting Q is much smaller than the spectral
linewidths.

To study dispersion of the condensate excitations, we fix
the pump power to the highest value available in our
experiment (see the Supplemental Material [41]), where the
interaction-induced effects are the strongest, and filter out
the strong contribution of the condensate near k = 0 with
an edge filter in momentum space. This allows us to detect
the much weaker emission from the excitations without

(a)

saturating the camera [46]. We use a vertically (hori-
zontally) oriented edge to block the emission from
k, < 0.55 um~" (k, < 0.5 yum~"). Tomographic scans are
performed for eachiedge filter orientation and combined to
reconstruct a 2D excitation spectrum. A constant-energy
slice of the scans is presented in Fig. 2(a) showing the
momentum-resolved §; texture and the edges (dashed
lines) of the filter. A circular real-space aperture is also
used to block the photoluminescence from the annular
barrier of the optical trap.

The images of the collective excitation branches along
k. at kj = 0 for horizontal and vertical polarizations are
shown in Figs. 2(b),(c). The residual emission at the
condensate energy has the characteristic Airy pattern
arising from the diffraction on the real-space filter [46].
Above the condensate energy, clear Bogoliubov excitation
branches are seen in both orthogonal polarizations. The
negative or ghost branches [46] are also detectable but are
extremely weak (see the Supplemental Material [41]);
therefore, we focus on the much brighter normal branches
in our detailed analysis. At a constant energy slice
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FIG. 2. Dispersion of collective excitations in the high-density regime. (a) Cross section of the Stokes vector component S| at the
constant energy E = 1.60154 eV. Gray dotted lines mark the edges of the filtered area. The frames of reference are marked as in
Fig. 1(b). (b),(c) Examples of the photoluminescence spectra at k = 0 in (b) horizontal (H) and (c) vertical (V) polarization basis. Data
points show energies extracted from fitting, white solid lines—the fitted model, and white dotted lines—single-particle dispersions.
White dashed line marks the energy of the condensate E = y = 1.600252 eV and the gray dotted line is the edge of the spatial filter in
momentum space. The condensate emission in the image is attenuated by a factor of 0.01 (b) and 0.1 (c). (d) Energy splitting between the
excitations predicted by the model with the cross sections in the directions parallel (solid line) and perpendicular (dotted line) to the
anisotropy axis. (e) Dispersions and (f) energy splitting between the collective excitations in the directions parallel and perpendicular to
the condensate polarization direction with the corresponding theoretical fits (solid lines). Green dashed line in (f) shows the energy
splitting for the single-particle states. Gray shaded area in (e),(f) marks the range of emission blocked by the edge filter.
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[see Fig. 2(a)], the two branches have different polari-
zations and wave vectors. Equivalently, the dispersions are
split as shown in Fig. 2(e). As predicted by theory and
shown in Fig. 2(d), the energy splitting is highly aniso-
tropic, which is confirmed by the experimental data in
Fig. 2(f). As in the low-density limit (Fig. 1), the collective
excitation branches diverge in the direction perpendicular
to the anisotropy axis (along k) and cross in the orthogo-
nal direction (along k).

The experimental results can be modeled by solving the
linearized equations for excitation eigenstates within the
mean-field framework, as described in Ref. [25]. Taking
into account the optical anisotropy and the TE-TM split-
ting, the excitations of a linearly polarized condensate at
k = 0 result in four dispersion branches +eXV—two for
positive and two for negative energies with respect to the
condensate energy (chemical potential) £ = u.

Expressed in the basis aligned to the cavity anisotropy
axis, the positive excitation branches can be written as:

¢(q) =/ (Q+e(q) FAg>) (Q+e(q) F Ag? +2(ay —ar)n)

e (g) =/ (c(q) ) (e(@) £ + 2 +a)n).  (2)

where €(q) = e1p(q) — €1p(0), and n = 2n is the total
condensate density. Here the wave vector is aligned to
the anisotropy axis such that g = k| 1, and the order of the
+ and 7 signs corresponds to k| and &, . The two branches
inherit the anisotropic behavior of the single-particle
dispersions, as shown by the energy splitting in k space
[see Fig. 2(d)]. However, the crossing points k* now also
depend on the spin-dependent interaction constants.

(a) (b)

Since the parameters £ and € are known from the low-
density measurements, we fit the measured dispersion of
excitations using a;n and a,n as fitting parameters. Good
agreement between the experimental data and the theoreti-
cal model is illustrated in Figs. 2(e),(f). One can observe a
shift of the crossing points k* with respect to the low-
density case, directly induced by the polariton-polariton
interactions in the condensed state. The resulting values are
ayn = (322 + 12) peV for the polaritons in the triplet spin
configuration and a,n = (9 £ 15) peV in the singlet con-
figuration, with the corresponding chemical potential
u=(a;+a)n—(Q/2) = (317 +20) pueV. The conden-
sate density is measured [46] to be ~2200 um™2.
This yields the interaction constants a; = (0.293+
0.029) peV um?, while a, = (0.008 £ 0.014) ueV pum?.
These measured values are in good agreement with
previous estimates. For polaritons in GaAs-based samples,
it is common to neglect the singlet contribution to the total
blueshift. This assumption is fully supported by our result,
with @, around 2 orders of magnitude smaller than a;. Our
values yield the ratio a,/a; = (0.027 £+ 0.048), being
positive and smaller than the common assumptions [7,9]
for the GaAs system. The relative uncertainty of the ratio is
high due to the uncertainty in individual interaction
constants, which precludes a clear determination of its
sign. However, taking into account the spin-dependent
interactions and the nonzero (positive) value of a, is
essential to properly model the polarization-resolved col-
lective excitations spectra, as demonstrated by statistical
analysis of the goodness of fit (see the Supplemental
Material [41]). We note that the small, positive ratio of
a,/a, falls into the known region of stability of phase
space for a linearly polarized condensate [7,12]. In con-
trast to previous reports, our approach enables a direct
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FIG. 3.

(a) S; and (b) S, components of the Stokes vector for the collective excitations. Shown are experimental (left column) and

theoretical (right column) results for the lower excitation branch e” (top row) and the upper branch €V (bottom row). Color scales are
normalized to the maximum of the Stokes parameter, where the maximum Stokes amplitudes of the experimental results are around
40%. (c) Calculated pseudospin texture of eV (black arrows), plotted over the field texture obtained from the theoretical model. Red

crosses mark the positions of the crossing points.
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measurement of both values. The corresponding
exciton-exciton interaction strengths, defined as afY, =
Now(a12/X3) where Ngw = 12 is the number of quantum
wells, have the values of @& = (10.3 4 1.1) peV um? and
as* = (0.2 4 1.7) peV um?, which are in good agreement
with previously reported values for the GaAs micro-
cavities [39,53].

Spin texture of excitations.—The in-plane pseudospin of
the collective excitations is characterized by the Stokes
vector for the excitation eigenstates. Extracted polarization
patterns are presented in the left columns of Figs. 3(a),(b),
with the right columns showing the corresponding solution
of the full theoretical model. To highlight the contrast in the
patterns in spite of a very small splitting between the
branches, we calculate the maximum Stokes vector com-
ponents at the energies slightly offset from the eigen-
states (the details of the analysis can be found in the
Supplemental Material [41]). The experimental results
show a good correspondence to the polarization patterns
of the eigenstates expected from the model. The resulting
pseudospin textures [Fig. 3(c)] show a pattern similar to
that reported in the single-particle case [27]. However, the
existence and position of the diabolical points with the
associated effective monopolar magnetic field is now
governed not only by the ratio of Q and f but also by
the polariton interactions since they arise from the collec-
tive (Bogoliubov) excitations of an interacting condensate.
The exact crossing points and the corresponding monop-
oles in the pseudospin patterns are not directly accessible in
our experiment, being too close to the strong condensate
emission. Nevertheless, a clear manifestation of such a
gauge field texture is visible in the experimental data
[Fig. 3(c)].

Conclusions.—In this Letter, we have demonstrated
anisotropy of collective excitations in a spinor exciton-
polariton condensate, which results from the innate spin
anisotropy of polariton interaction and the optical
anisotropy (birefringence) of the microcavity under study.
The optical anisotropy provides the strongest contribution
to the anisotropy of the collective excitation branches in our
GaAs-based system. Our experimental method enables a
new, direct measurement of the interaction constants a; and
a, for the polaritons in the triplet and singlet spin
configurations and can be applied to other systems with
different interaction strength ratios. In our sample, we
confirmed a 2 orders of magnitude difference in the
interaction strengths «; 5.

Furthermore, we extracted the pseudospin textures of the
collective excitations in the polariton condensate resulting
from the interplay between the effective magnetic field
of the microcavity and spin-dependent interactions. The
presence of diabolical points with the associated spin
structure characteristic of a monopolelike magnetic field
signifies that polariton systems in the high-density (non-
linear) regime can be used in future studies of synthetic

gauge fields and topological physics [17,54]. The dominant
role of the cavity birefringence in the anisotropy of collective
excitations points to a straightforward way to design
synthetic gauge fields for quantum liquids of light by
tailoring the optical anisotropy of microcavities [32,55-58].
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