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We describe a new approach for driving GeV-scale plasma accelerators with long laser pulses. We show
that the temporal phase of a long, high-energy driving laser pulse can be modulated periodically by
copropagating it with a low-amplitude plasma wave driven by a short, low-energy seed pulse. Compression
of the modulated driver by a dispersive optic generates a train of short pulses suitable for resonantly driving
a plasma accelerator. Modulation of the driver occurs via well-controlled linear processes, as confirmed by
good agreement between particle-in-cell (PIC) simulations and an analytic model. PIC simulations
demonstrate that a 1.7 J, 1 ps driver, and a 140 mJ, 40 fs seed pulse can accelerate electrons to energies of
0.65 GeV in a plasma channel with an axial density of 2.5 × 1017 cm−3. This work opens a route to high
repetition-rate, GeV-scale plasma accelerators driven by thin-disk lasers, which can provide joule-scale,
picosecond-duration laser pulses at multikilohertz repetition rates and high wall-plug efficiencies.
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The acceleration fields generated in a laser-plasma
accelerator (LPA) are of the order of the wave-breaking
field Ewb ¼ mecωp=e, and for parameters of interest [1]
can reach 100 GVm−1—around 3 orders of magnitude
greater than possible in radio-frequency accelerators. The
duration of the particle bunches accelerated by a LPA are a
fraction of the plasma period Tp ¼ 2π=ωp, i.e., a few
femtoseconds [2–8]. Here, ωp ¼ ðnee2=meϵ0Þ1=2 is the
plasma frequency, where ne is the electron density.
The development of LPAs has seen remarkable progress

in recent years [9–11]. Micrometer-sized electron bunches
with GeV-scale energies can be generated from LPA stages
a few centimeters long [12–16], and hence LPAs have the
potential to drive highly compact sources of high-energy,
femtosecond-duration particles and radiation [17–23].
Indeed, their proof-of-principle applications to x-ray im-
aging [24–26], photochemistry [27], and electron radio-
therapy [28–30] have been demonstrated, and conceptual
designs for LPA facilities have been developed [31,32].
Efficient excitation of the plasma wave requires that the

duration of the driving laser pulse satisfies τ < Tp=2, and
the peak laser intensity is of order 1018 Wcm−2. Few laser
systems can meet these challenging requirements, and in
practice almost all LPAs are driven by Ti:sapphire laser
pulses with τ ≈ 40 fs and peak powers up to the PW range.
These lasers are limited [33] to pulse repetition rates frep ≲
10 Hz and mean powers ≲100 W, whereas many appli-
cations of LPAs would require operation at frep ≳ 1 kHz,
with mean laser powers in the kW range. To date, kHz
operation of LPAs [34–39] has been limited to generating
electron energies below 15 MeV by the low pulse energies
available from kHz Ti:sapphire lasers.

A further consideration of vital importance for future
high-mean-power LPAs is the wall-plug efficiency. For Ti:
sapphire lasers this is < 0.1% [40], and with laser-to-wake
and wake-to-bunch efficiencies each less than 50% [41],
the overall efficiency is far from the > 10% required by
future, cost-competitive high-energy LPAs [42].
Substantially more efficient lasers have been developed

in recent years. For example, thin-disk lasers have optical-
to-optical efficiencies exceeding 50% and have recently
generated pulse energies of ∼1 J at frep ¼ 1 kHz [43–45].
However, their long (picosecond) pulse duration makes
them unsuitable for driving LPAs directly. Spectral broad-
ening in gases has been shown [46–48] to reduce the
duration of thin-disk laser pulses, but sub-100 fs pulses
with the energy required to drive high-energy LPAs have
yet to be demonstrated.
Many approaches for driving LPAs with long (τ > Tp)

pulses have been investigated. In the plasma beat-wave
accelerator (PBWA) [49] two long pulses of angular
frequencies ω1 and ω2 ¼ ω1 þ ωp are combined to create
a modulated pulse which can resonantly excite a plasma
wave. However, current high-efficiency laser technologies
cannot generate a suitable second wavelength with the
required high average power. Plasma waves can also be
driven via self-modulation of long laser pulses [50,51], but
this relies on stochastic, and highly nonlinear, processes
which would make controlled injection and acceleration
difficult.
In this Letter we describe a new approach which could be

used to drive GeV-scale, multi-kHz LPAs with single, joule-
level, picosecond-duration pulses of the type recently
demonstrated by thin-disk lasers. We use a one-dimensional
(1D) analyticmodel and particle-in-cell (PIC) simulations to
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demonstrate the physics underlying this scheme. To provide
an example, we simulate the acceleration of externally
injected electrons by a 1.7 J, 1 ps drive laser pulse to a
mean energy of 0.65 GeV.
As shown in Fig. 1, our approach has three stages. In the

first, the modulator stage, a short (τseed ≲ Tp0=2), low
energy seed pulse and a long (τdrive ≫ Tp0), high-energy
driving laser pulse are focused into a plasma waveguide.
Here Tp0 refers to the plasma period on axis. The seed pulse
drives a low amplitude plasma wave which periodically
modulates the temporal phase of the drive pulse, and hence
generates frequency sidebands at ω0 þmωp0. If isolated,
the red- (m < 0) and blueshifted (m > 0) sidebands would
form a pair of temporal pulse trains separated by Tp0=2, but
with both sets present the temporal profile of the drive pulse
remains smooth.
In the second stage, after removal of the seed pulse, the

spectrally modulated drive pulse is converted into a
temporally modulated train of short pulses, separated by
Tp0, by introducing a shift of Tp0=2 between the red- and
blueshifted trains. This can be achieved by introducing a
dispersive optical system [52–54] with the correct group
delay dispersion (GDD). We note that a similar technique
was proposed for plasma-based pulse compression in
PBWA through electromagnetic (EM) cascading [55,56].
A major advantage of our scheme is that only a single high-
energy drive pulse is required, rather than two pulses with a
frequency difference matched to ∼ωp0.
In the third (accelerator) stage, the pulse train is focused

into a second plasma waveguide with the same axial density
as the modulator, which resonantly excites a large-ampli-
tude plasma wave for acceleration of externally injected
electrons.
Considerable insight into these processes can be gained

with the aid of a 1D analytic model (see Supplemental

Material [57]). The drive pulse has a normalized vector
potential, aðz; tÞ ¼ bðz; tÞ exp ½iðk0z − ω0tÞ�, where ω0 is
the center frequency of the pulse, and z is the coordinate
along the propagation axis. After copropagating a distance
z with a linear plasma wave of density neðz; tÞ ¼ n0þ
δn cos ðkp0z − ωp0tþ ΔϕÞ, the envelope of the pulse
becomes [59],

bðζ; τÞ ≈ jbðζ; 0Þj
X∞

m¼−∞
imJmð−βÞ exp ½imðωp0τ þ Δϕ0Þ�:

ð1Þ

Here, ζ ¼ z − vgt, where vg is the group velocity of the
driver, τ ¼ t, β ¼ ð1=2Þðω2

p0=ω0Þðδn=n0Þðz=vgÞ, and
Δϕ0 ¼ −ðΔϕþ ωp0z=vpÞ, where vp is the phase velocity
of the plasma wave. The generation of sidebands at ω0 þ
mωp0 is immediately apparent. In the temporal domain, the
red- and blueshifted sidebands each form trains of pulses
separated by Tp0, with a relative shift [57] between the two
trains of Tp0=2.
To demonstrate this scheme, and to gain further insight,

we performed high-resolution 2D PIC simulations with the
EPOCH code [60]. We compared these results with those
obtained with a different PIC code implemented with
cylindrical symmetry to check the validity of the 2D
simulations [57]. The parameters of the drive and seed
laser pulses were chosen to be similar to those recently
demonstrated for thin-disk lasers operating at frep ≳ 1 kHz
at a wavelength of λ0 ¼ 1030 nm. Both pulses were
assumed to be bi-Gaussian, with a drive (seed) energy of
Edrive
p ¼ 600 mJ (Eseed

p ¼ 50 mJ) and a full width at half
maximum pulse duration of τdrive ¼ 1 ps (τseed ¼ 40 fs).
The pulses were separated by 1.7 ps.

FIG. 1. Schematic diagram of a LPA driven by plasma-modulated laser pulses. A long, high-energy, drive laser pulse is phase
modulated in the modulator stage by its interaction with the plasma wave driven by a short, low-energy seed pulse. The modulation
generates sidebands at ω0 þmωp0, although the temporal intensity profile of the drive pulse remains smooth. After leaving the
modulator stage, the seed pulse is removed by a polarizing beam splitter, and the drive pulse is passed through (or reflected from) a
dispersive optical system which removes the relative spectral phase of the sidebands, to form a train of short pulses spaced by
Tp0 ¼ 2π=ωp0. This pulse train is focused into an accelerator stage, which comprises a plasma channel with the same on-axis density as
that of the modulator stage. The pulse train resonantly excites a strong plasma wave that can be used for particle acceleration.

PHYSICAL REVIEW LETTERS 127, 184801 (2021)

184801-2



The plasma parameters of the modulator and accelerator
stages were identical. For radii r < r0 ¼ 1.2wM, the elec-
tron density was nchðrÞ ¼ ne0 þ ð1=πrew2

MÞðr=wMÞα,
where ne0 ≡ neð0Þ ¼ 2.5 × 1017 cm−3, and wM ¼ 30 μm
is approximately the spot size of the lowest-order channel
mode. For r > 1.2wM, neðrÞ ¼ neðr0Þ for Δr ¼ 10 μm,
before decreasing linearly to zero in the same distance. The
parameter α ¼ 10, and hence the channels were steep sided,
with finite losses.
The drive and seed pulses were focused to a spot size

w0 ¼ wM ¼ 30 μm at the entrance to the modulator chan-
nel. Figure 2(a) shows that the seed pulse drives a plasma
wave of amplitude δn=ne0 ≈ 2% on axis, which generates
sidebands on the drive pulse at ω0 þmωp0, although its
temporal profile remains smooth. Figures 2(b),2(c) show,
after the modulator, the on-axis electric field (b) and
temporal intensity profile (c) of the drive pulse, before
and after the application of a quadratic spectral phase with a
group delay dispersion (GDD) of ψ ð2Þ ¼ −1480 fs2. This
value of the GDD was determined numerically to produce
the highest-intensity pulse train, and is in excellent agree-

ment with the value ψ ð2Þ
opt ¼ �1485 fs2 predicted by the 1D

model [57]. It is evident that the dispersion converts the
phase modulated, but temporally smooth, drive pulse into a
train of short pulses separated by Tp0 ¼ 220 fs. The use of
seed and drive pulses of different wavelengths is explored
in Ref. [57].
Figure 2(d) shows the drive pulse train, and the plasma

wake, after 50 mm propagation in the accelerator stage. The
pulse train resonantly excites a strong plasma wave with
δn=ne ≈ 15% over the whole length of the accelerator. The
spectrum of the driver is further modulated by this plasma

wave, leading to the formation of additional sidebands
through EM cascading [56]; it is also redshifted, the shift
increasing towards the back of the pulse train, where the
wake amplitude is higher.
The results of the PIC simulation can be compared with

the 1D model of the modulator stage [57]. Figure 3(a)
shows, as a function of the length Lmod of the modulator,
the relative energies in the central, redshifted, and blue-
shifted bands of the drive pulse. It can be seen that the
analytic model and PIC simulations are in close agreement.
The main difference is that leakage in the plasma channel,
which is not included in the 1D model, attenuates the drive
pulse in the PIC simulation. Figures 3(b),3(c) show (b) the
properties of the pulse train which would be produced if the
drive pulse at that point was compressed by introducing a
GDD optimized to yield the highest-intensity pulse train;
and (c) the peak accelerating field produced by injecting
these trains into the accelerator stage. Examples of the
pulse trains generated for three values of Lmod are shown in
the insets of Fig. 3(c). Again, very good agreement is
obtained. The peak pulse intensity is seen to grow approx-
imately linearly with Lmod; this is expected from the 1D
model, since the spectral bandwidth increases as Lmod, and
hence the duration of each compressed pulse will vary as
L−1
mod. It can be seen that trains of pulses as short as 15 fs can

be generated. Although the peak intensities of the pulses
increase linearly with Lmod, the peak accelerating field does
not increase significantly for Lmod ≳ 100 mm. This is
expected since for single, short (τdrive ≪ Tp0) drive pulses
the wake amplitude depends only on the energy of the pulse
[61], and for resonant pulse trains the wake amplitude
depends only on the total energy of the train. The excellent
agreement between the 1D analytic model and the PIC

FIG. 2. Particle-in-cell simulations. (a) PIC simulations of the modulator stage, with results shown for the end of the modulator
(z ¼ 120 mm). The top panel shows the on-axis spectral intensity of the drive pulse, plotted against a frequency scale
m ¼ ðω − ω0Þ=ωp0. The middle panel shows the longitudinal intensity profiles of the seed and driver pulses and the relative
amplitude of the plasma wave on axis (y ¼ 0). The bottom panel shows, for z ¼ 120 mm, a 2D plot of the electron density relative to the
channel profile δnch=nch ¼ ðne − nchÞ=nch. The shading of the longitudinal profiles indicates the local effective frequency −dϕ=dt,
where ϕ is the temporal phase, using the same color scale as the top panel. (b) The modulus of the on-axis electric field of the drive pulse
together with the red- and blueshifted components before and after application of a quadratic spectral phase ψ ð2Þ ¼ −1480 fs2. (c) The
corresponding 2D intensity profiles. (d) The same plots as in (a) but at a distance z ¼ 50 mm into the accelerator stage.
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simulations demonstrates that, at least for this parameter
range, the former captures the key physics involved in the
operation of the modulator stage.
The analytic model and PIC simulation presented above

demonstrate that plasma modulation can be used to convert
a high-energy, long drive pulse to a train of short pulses
suitable for resonant excitation of a large amplitude plasma
wave. We emphasize that processes by which the drive
pulse is modulated are linear, and can therefore be well
controlled. Nevertheless it is important to avoid instabilities
developing in either the modulator or accelerator stages. In
this work the growth of instabilities, such as forward
Raman scattering [62,63], was suppressed by operating
in a favorable parameter regime, and by employing a
plasma channel with small, but finite losses. These losses
damp higher-order waveguide modes excited by the inter-
action between the drive pulse and the seed-driven plasma
wave, preventing modulation of the temporal profile of the
drive pulse, which would be susceptible to instability-
driven growth [64].
In Fig. 4 we demonstrate that the scheme can be scaled to

higher drive pulse energies, and hence higher acceleration
gradients, whilst ensuring that the modulator operates in a
well-controlled, linear regime. For these simulations the

parameters of the accelerator stage, and the axial density of
the modulator stage, were the same as in Fig. 2. However,
the matched spot size of the modulator was increased to
50 μm in order to allow the seed and drive pulse energies to
be increased to 140 mJ and 1.7 J while keeping their peak
intensities the same as in Fig. 2. Figure 4(a) shows clearly
that a quasilinear wakefield, with an amplitude consider-
ably larger than that of Fig. 2, can be driven over the entire
length of the 100 mm acceleration stage.
To demonstrate particle acceleration, a 1 pC electron

bunch of energy 35 MeV, 5 fs root-mean-square duration,
and 4 μm transverse width was injected into the focusing
phase of the wakefield, at the position of peak acceleration.
Figure 4(c) shows the evolution with z of the normalized
energy spectrum Q̂eðWe; zÞ of this bunch, where We is the
electron energy. It can be seen that the bunch maintains a
relatively narrow energy spectrum up to z ≈ 50 mm, at
which point the mean energy is ∼500 MeV. At larger z,
dephasing causes the energy spectrum to broaden. The
mean electron energy at the end of the accelerator stage is
0.65 GeV. The laser-plasma energy transfer in the accel-
erator stage is found [57] to be 9%.
The results of Fig. 4 show clearly that the concept

described in this Letter can be scaled to generate higher
particle energies without introducing unwanted instabilities
in either modulator or acceleration stages. Our results serve
to demonstrate the operation of this scheme, but further
work will be required to fully explore its potential. For
example, it is likely that the energy transfer efficiency could
be increased, and the properties of the accelerated bunch
improved, by optimizing the parameters of the drive laser

FIG. 3. Comparison of the results of the 1D analytic model
(dashed lines) and PIC simulations (solid lines), plotted as a
function of the length of the modulator stage. (a) The relative
transmitted energies of the drive pulse (black), and of its
components in the central band (i.e., jω − ω0j < ωp=2, green),
and in the blueshifted (i.e., jω − ω0j > ωp=2, blue) and redshifted
(jω − ω0j < −ωp=2, red) sidebands. (b) The peak intensity
(blue), and FWHM duration (orange), of the most intense pulse
in the train generated by applying a quadratic spectral phase,
optimized to yield the highest-intensity pulse train, on the drive
pulse emerging from the modulator stage. (c) The peak accel-
erating electric field produced by injecting into the accelerator
stage the pulse trains which would be generated by compressing
the drive pulse at that point in the modulator.

FIG. 4. Performance of a scaled accelerator with seed and drive
pulse energies increased to 140 mJ and 1.7 J, respectively. (a) The
on-axis longitudinal profiles of the laser intensity and the relative
electron density δn=n0 at z ¼ 2 (top) and z ¼ 100 mm (bottom)
in the acceleration stage. The color scale shows the local laser
wavelength. (b) Evolution of the normalized spectral intensity of
the drive laser with propagation distance z in the acceleration
stage. (c) Evolution of the normalized energy spectrum
Q̂eðWe; zÞ of the injected electron bunch with z.
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and plasma channel, and the beam loading of the plasma
wakefield.
In summary, we have presented a new approach for

resonantly driving plasma accelerators with long laser
pulses, based on copropagation with a low-amplitude
plasma wave and compression by a dispersive optic of
the spectrally modulated output to form a train of short
pulses. This scheme was demonstrated via a 1D analytic
model and 2D PIC simulations, which were found to be in
excellent agreement. Numerical simulations showed that a
quasilinear wakefield could be driven over a dephasing
length to accelerate a test bunch to a mean energy
∼0.65 GeV.
We note that the key components required to realize this

new approach have all recently been demonstrated, and, in
principle, all are capable of multikilohertz operation. These
include meter-scale, low-loss, all-optical plasma wave-
guides [65–71]; 100 mJ-scale, sub-50 fs seed laser pulses
[72]; and joule-level, few-picosecond, 1030 nm drive laser
pulses [43,45]. The proposed scheme requires tight tem-
poral and spatial overlap of multiple laser beams, the most
challenging of which are (i) control of the delay between
the electron bunch and the seed pulse (∼10 fs); and
(ii) control of the pointing of the seed and drive pulses
relative to the waveguide axes (< 10 μrad). These require-
ments have already been met [68,69,71,73–76] in experi-
ments operating at frep ¼ 1 Hz, and even tighter tolerances
could be achieved with the improved feedback made
possible by kHz operation.
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