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We investigate the sideband spectra of a driven nonlinear mode with its eigenfrequency being modulated
at a low frequency (< 1 kHz). This additional parametric modulation leads to prominent antiresonance line
shapes in the sideband spectra, which can be controlled through the vibration state of the driven mode. We
also establish a direct connection between the antiresonance frequency and the squeezing of thermal
fluctuation in the system. Our Letter not only provides a simple and robust method for squeezing
characterization, but also opens a new possibility toward sideband applications.

DOI: 10.1103/PhysRevLett.127.184301

Micro- and nanomechanical resonators have been shown
to be ultrasensitive for charge, force, and mass measure-
ments in the nonlinear regime [1–6]. However, the high
sensitivity also renders the resonators susceptible to envi-
ronmental fluctuations such as thermal noise [7–10] or
molecular motion [11,12], thereby limiting their applica-
tions. One way to circumvent this limit is by taking
advantage of squeezing effects, where the fluctuation of
one quadrature is reduced at the expense of that in its
conjugate [13]. Such a signature was firmly established in
both theory and experiment to characterize squeezing
effects in various types of resonators [14–17]. However,
the squeezing effect in the quadrature is usually very subtle
and requires sensitive measurements and careful analysis to
enable its detection, particularly in systems of high quality
factors (Q).
Recently, there has been rising interest in the sideband

response of resonantly driven nonlinear modes [18–20].
Nonlinear effects are significant in resonance-based sen-
sors, and they give rise to interaction between different
vibration modes [21–23] and frequency mixing [24–29],
leading to interesting sideband phenomena. Huber et al.
[18] recently revealed that the fluctuations around stable
states of the driven system can also result in sideband
response. They appear in pairs at either side of the drive
frequency and exhibit a strong amplitude asymmetry. More
importantly, their integrated intensity ratios give direct
access to squeezing in the system [18], which avoids the
difficulties in the quadrature method. On the other hand,
these sidebands also have important implications in tech-
nological applications, such as tunable signal-to-noise ratio
amplifiers, supernarrow frequency detectors, and filters
[30]. Therefore, it is of great importance to understand
their behavior under external stimulus and achieve the
control of these sidebands.

In this Letter, we present a so-far undescribed sideband
response of a nonlinear vibrating membrane resonator
using a two-tone measurement. In addition to the drive
tone that resonantly excites the system, we also apply an
additional probe tone with a very low frequency (< 1 kHz).
We find that this probe tone modulates the eigenfrequency
of the system and leads to a sideband response markedly
different from previous studies [18–20]. Specifically, both
their amplitudes and line shapes show strong asymmetries
and, most saliently, the sidebands exhibit a typical anti-
resonance response. We further show that the antiresonance
frequency can be used to determine the squeezing param-
eters of the system, and they are tunable through the control
of vibrational states of the driven mode, which provides a
wide tunability for the sideband applications mentioned
above [30]. In addition, since parametric modulation is
widely used in different areas [17], such as coupling of
mechanical resonators [31,32], parametrons [20], and
optomechanics [33], our results can be adapted to many
different systems. Finally, they may also give insight into
other sideband related phenomena, such as the energy
transfer via mode coupling in the nonlinear and the chaotic
regime [20,26,32,34,35].
The measured device is composed of a ∼500 nm thick

rectangular (542 × 524 μm2) silicon nitride (Si-N) mem-
brane suspended on a massive silicon frame attached to a
piezo ring. The vibration of the freestanding membrane is
excited by applying an ac voltage onto the piezo ring at a
drive frequency fd close to the eigenfrequency f0 of the
membrane resonator.
To detect the vibrations, we fabricate 27 nm thick

aluminum structures on the membrane using a standard
e-beam lithography technique and measure the inductive
voltage across the structures (with 30 μm effective length,
perpendicular to the magnetic field) under an external
uniform magnetic field, as depicted in Fig. 1(a). Voltage
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signals are captured by the differential preamplifier to
suppress the common-mode noise before measurements.
The real vibrational amplitude can be quantitatively
obtained from the voltage using Faraday’s law. All the
measurements are performed in vacuum at room temper-
ature. More details about the sample fabrication, setup
details, and fitting processes can be found in the
Supplemental Material [36] and also in our previous works
[37–39].
Figure 1(b) shows the response of our system to a typical

single excitation VexcðtÞ ¼ Vexc sinð2πfdtÞ driven close to
its fundamental mode. The vibration exhibits a typical
Duffing (i.e., geometric cubic nonlinearity) response with
two stable states of different vibration amplitudes when the
drive tone is swept along different directions. We can
quantitatively extract the driven-mode parameters, includ-
ing its eigenfrequency f0 ≈ 250.85 kHz, damping Γ=2π ¼
13.5 Hz (Q ≈ 18000) and the cubic (Duffing) nonlinearity
β ¼ 1.13 × 1023 m−2 s−2 using the methods described in
the Supplemental Material [36]. In the upper branch (i.e.,
the large vibration state), a simultaneous application of a
drive tone at fd and a probe tone with a much smaller
frequency fp can result in the excitation of two ultranarrow
side peaks with their frequency at fd þ fp (blue side peak)
and fd − fp (red side peak), respectively, as indicated by

our experiments in Fig. 1(c). These frequency relations are
schematically summarized in Fig. 1(d). From here, we can
safely exclude the possibility of a side peak induced by
cubic nonlinearity, where the side peak should locate at 2
times the probe frequency away from the drive fre-
quency [40].
We then sweep the probe tone from 10 to 1000 Hz with a

step size of 10 Hz under a fixed drive tone, and the sideband
response is plotted in Fig. 2(a). Their amplitude reaches a
maximum at a peak frequency fpk ¼ �380 Hz and starts to
decrease if fp further increases. More importantly, there is a
prominent silent region where the sideband signals are
strongly suppressed below the noise floor. This region only
appears in the red sideband, but is absent in the blue
sideband, leading to a drastically asymmetric line shape.
We will show below that there exists a minimum pointM in
the silent region with its frequency and amplitude labeled
by far and Par, respectively. The sidebands also exhibit
interesting phase response as depicted by the blue dots in
Fig. 2(b). There are phase shifts of π when the ultranarrow
side peaks are tuned through the drive tone fd, the two
sideband peaks at fd � fpk, and the M point at fd þ far.
All these features in both the amplitude and phase are
reminiscent of a typical antiresonance response [41,42]. In
the Supplemental Material [36], we show that the piezo can
be excluded as a possible origin of the antiresonance. We
also show additional sideband spectra measured under
different drive conditions and from another device, all
exhibiting similar response.
To model the observed sideband response, we use the

following equation of motion:

ẍþ 2Γ_xþ ½ω2
0 − a2 cosðωptÞ�xþ βx3 ¼ F cosðωdtÞ; ð1Þ

where F, ω0 ¼ 2πf0, ωd ¼ 2πfd, and ωp ¼ 2πfp denote
the driving force, angular frequency of the flexural mode,
drive tone, and probe tone, respectively. The probe tone
also modulates the eigenfrequency with a strength of a2,
which can be characterized via a dc measurement with the
method in the Supplemental Material [36].
Using the standard rotating wave approximation [18,43],

we can switch from the lab frame into the rotating framewith
two new quadratures y and y�. We can approximate the
solution by expanding the quadrature y into a main response
y0 and the perturbed response y1. The former describes the
response at ωd, while the latter is responsible for the
sidebands. We find that y0 is governed by the well-known
Duffing equation, and the equation of motion for y1 is

_y1 ¼ −Γð1þ iδω − 2ijy0j2Þy1 þ iΓy20y�1 − iΓ cosðωptÞy0;
ð2Þ

with δω ¼ ðωd − ω0Þ=Γ. Here, the first two terms on the
right-hand side of the equation describe the vibrations when
the resonator deviates from the stable states and the last term

FIG. 1. (a) Schematic drawing of the Si-N membrane resonator
structures (cross section shown as inset) and the on-chip
electromagnetic detection scheme. (b) The frequency response
curve of the fundamental (1,1) mode (solid blue line) measured at
Vexc ¼ 0.1 V fitted by the Duffing model (red dashed line).
(c) The measured power spectrum of a two-tone experiment with
fd ¼ 251 kHz and Vexc ¼ 0.5 V, fp ¼ 380 Hz and Vp ¼ 0.3 V.
(d) Schematic drawing of the measurement scheme and the
frequency relation between the drive and probe tone and their
response.
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represents a force induced by the parametric modulation. By
solving this equation, we obtain the sideband amplitudes as
well as their phases at different probe frequencies. Further
details of the theoretical calculation can be found in the
Supplemental Material [36].
In Figs. 2(a) and 2(b), we compare the theoretical

calculations (dashed lines) with experiment data of the
amplitude and phase of the sideband response, respectively,
and they both showed excellent agreements.We note that the
π phase shift across the drive frequency is not an intrinsic
effect but due to a phase delay between the longitudinal and
transversewaves in the piezo [44]. Further discussion can be
found in the Supplemental Material [36].
From here, we can clearly see that the silent region in

experiment corresponds to an antiresonance dip M in the
sideband response. In fact, the emergence of a clear
antiresonance dip requires ωpk=Γ ≫ 1, and in this weak
damping limit [45], we find that far can be well approxi-
mated by

ωar ¼ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðδω − jy0j2Þ2
q

: ð3Þ

This relation suggests that the position of the M point is
susceptible to the vibration state of the driven mode, as y0 is
determined by both the drive and the detuning of the drive
tone (see Supplemental Material [36]).
Figure 3 shows the calculated far and Par as a function of

power and detuning of the drive tone using the mode
parameters given above. To compare with experiments, we
can extract far using the center frequency of the silent
region, and the error bars correspond to the width of the
silent region [46]. These experimentally extracted positions
(white spheres) agree well with our theoretical calculation,
as indicated in the lower panel of Fig. 3. We note that
when the excitation is strong, nonlinear effects beyond the
Duffing model [26,34] could come into play and lead
to a small but noticeable deviation in the 1 V data (see
Supplemental Material [36]). We can also make the
following observations: (1) The highest power in the
calculations here is still 10 dBm less than our experimental
noise level, indicating an excellent cancellation effect of the
sideband motion. (2) It is also evident here that far has a
lower bound given by the damping Γ=2π, as suggested
from Eq. (3). (3) When the power of the drive tone is large
or its detuning is small, far is significantly away from the
drive frequency.
Further insights can be gained by comparing our results

with the sidebands induced by thermal fluctuations [18]. In
Fig. 4(a), we compare a theoretical sideband spectrum of
our case (red line) with that by thermal fluctuation (black

FIG. 2. (a) Overlaid power spectra with a sweeping
probe frequencies fp increasing from 10 to 1000 Hz in steps
of 10 Hz and Vp ¼ 0.5 V under a given drive Vexc ¼ 0.5 V and
fd ¼ 251 kHz. The color coding indicates different probe
frequencies. The blue dashed line shows a parameter-free side-
band calculation using Eq. (1). The coordinateMðfar; ParÞ marks
the calculated minimum point of the silent region. (b) The phases
of the sideband captured under the same condition in (a) and the
calculated phase are shown in blue dots and red-dashed line,
respectively. (a) and (b) share the same frequency axis.

FIG. 3. Theoretically calculated antiresonance frequencies far
and their power Par under different drive frequency fd and
power Vexc. The white spheres are the experimentally extracted
far at drive strength (0.5 and 1.0 V) and different fixed fd with
an error bar of �10 Hz. The lower panel shows line cuts for
two fixed voltages comparing the model (lines) and the
experimental results (dot).
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line), both using the mode parameters from our experi-
ments. Except for the antiresonance feature, the two spectra
have very similar line shapes, particularly regarding the
peaks. Therefore, both types of sidebands reflect the
vibration modes around the stable states of the driven
mode (i.e., sideband). The peak positions of the sidebands
correspond to the eigenfrequency of these vibration modes
and can be determined by

ωpk ¼ Γ · Imð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3jy0j2 − δωÞðjy0j2 − δωÞ
q

Þ; ð4Þ

where Im indicates the imaginary part of the argument.
The emergence of an antiresonance in the sideband
spectrum reveals the different character of the drive forces:
a deterministic coherent single-frequency force that peri-
odically changes the system parameters (appearing as
combined amplitude-frequency modulation here, see

Supplemental Material [36] and Refs. [47,48]) destruc-
tively interferes with sidebands, while this effect is absent
in the sidebands induced by broadband stochastic noise.
Based on this observation, these sidebands can be delin-
eated as “quasimodes” characterized as eigenstates con-
trolled by the vibration states of the mechanical system in
the nonlinear regime.
Even though the sidebands induced by parametric

modulation are deterministic, we can nevertheless relate
them with the squeezing effect of the fluctuations in the
system. In the weak damping limit, there is a simple
connection between the squeezing parameter ϕ that mea-
sures the transfer of fluctuations between a pair of con-
jugate variables and the antiresonance frequency in the
spectrum,

tanh 2ϕ ¼ ωar þ Γδω
2ωar þ Γδω

: ð5Þ

We note that the above relation only applies when the
system is in the upper branch. In principle, a similar
expression for the lower branch can be derived.
However, in the experiment, it is difficult to identify an
antiresonance structure in the sideband spectrum due to its
low amplitude (see Supplemental Material [36]). We also
note that, from Eq. (5), the squeezing parameter ϕ only
depends on the vibrational state parameters, such as
detuning, damping, and normalized amplitude, but not
on the external perturbation.
To testify the above relations, we compare the squeezing

parameters extracted from antiresonance frequency and
those from the noise-induced sideband area ratio. For a
thermally induced sideband, it has been shown that the
integrated intensity ratio between the two sidebands
(I−=Iþ) is solely determined by the squeezing parameter
ϕ [18]. Because of a moderate Q in our device, the
environmental thermal fluctuation itself does not induce
detectable sidebands. Nevertheless, we can still access this
quantity by introducing a broadband white noise of
300 kHz bandwidth and Vnoise ¼ 0.4 V [36] in addition
to a drive tone of Vexc ¼ 0.1 V and fd ¼ 252.5 kHz,
shown in Figs. 4(c) and 4(d). The integrated intensity
can be obtained by fitting the sidebands around the peak
frequency with two independent Lorentzian functions.
Figures 4(e) and 4(f) show the detuning and drive power
dependence of the integrated intensity ratio in blue dots,
while the red lines in Figs. 4(e) and 4(f) denote the
theoretical calculated values using far [Eqs. (3) and (5)].
We emphasize that there is no free parameter used in these
calculations and the excellent agreement between the two
methods indicates that far is indeed a reliable indicator of
the squeezing parameter.
Finally, we wish to comment on the robustness and

simplicity of our method. In the previously reported
method [18], a separate fitting is required for every

FIG. 4. (a) Theoretical sideband amplitudes driven by broad-
band noise (black) and a probe tone (red) with the same drive
tone. (b) Calculated squeezing parameter ϕ using far under
different drive conditions. (c) Detuning-dependent sidebands
measured with Vexc ¼ 0.1 V. (d) Drive-dependent sidebands
measured at fd ¼ 252.5 kHz. (e) The intensity area ratio between
the left and the right sideband I−=Iþ of (c). (f) The I−=Iþ of (d).
In both (c) and (d), the noise bandwidth is 300 kHz and
Vnoise ¼ 0.4 V. The theoretical results from our model are shown
as red solid lines and the experiments are shown as blue dots, and
they share the same y axis. (c),(e) and (d),(f) pairwise share the
same x axis.
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sideband spectrum to extract the squeezing parameter. In
contrast, our antiresonance frequency method only relies on
the knowledge of three parameters: δω, Γ, and ωar, all of
which can either be directly extracted from the experi-
ment or from a one-time fitting with the driven modes,
making our method much easier and simpler. The anti-
resonance frequency also provides a direct way to compare
the squeezing parameters under different conditions.
Figure 4(b) shows the calculated ϕ over the same parameter
space as that in Fig. 3, and it is positively related to both the
detuning and force. By comparing this result to the far map
in Fig. 3, we can deduce that the distance between far and
the drive frequency is inversely related to ϕ: the smaller the
distance, the larger ϕ.
In conclusion, we measured the sideband response of a

free-standing Si-N membrane using a two-tone measure-
ment under the conditions that (1) it is in the strongly
vibrating state of its nonlinear regime and (2) its eigen-
frequency is modulated at a low frequency. We observed
typical antiresonance line shapes in the sideband spectra.
The amplitude and the phase of these sidebands can be well
described by a Duffing equation with its eigenfrequency
being parametrically modulated at the probe-tone fre-
quency. The antiresonance results from a destructive
interference between the probe tone and the resulting
sideband. We further demonstrate that the antiresonance
can be controlled by the vibrational state of the driven
mode, thus providing a new possibility for future applica-
tion of sidebands. For example, these sidebands can act as
quasimodes and couple with other vibrational modes for
energy reshuffling in a nonlinear system. Finally, we
provide a robust and simple method to characterize the
squeezing effect even for resonators with a moderate Q,
evidenced by the excellent agreement between the squeez-
ing parameter extracted with the antiresonance frequency
and those with the sideband-area method.
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