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We explore the possibility to overcome the standard quantum limit (SQL) in a free-fall atom
interferometer using a Bose-Einstein condensate (BEC) in either of the two relevant cases of Bragg or
Raman scattering light pulses. The generation of entanglement in the BEC is dramatically enhanced by
amplifying the atom-atom interactions via the rapid action of an external trap, focusing the matter waves to
significantly increase the atomic densities during a preparation stage—a technique we refer to as delta-kick
squeezing (DKS). The action of a second DKS operation at the end of the interferometry sequence allows
one to implement a nonlinear readout scheme, making the sub-SQL sensitivity highly robust against
imperfect atom counting detection. We predict more than 30 dB of sensitivity gain beyond the SQL for the
variance, assuming realistic parameters and 106 atoms.
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Free-fall atom interferometers [1–3] are extraordinarily
sensitive to external forces and find key applications as
gravimeters, gradiometers, and gyroscopes in applied
physics and fundamental science [4–6]. State-of-the-art
devices use N uncorrelated atoms and their phase estima-
tion uncertainty is lower bounded by the standard quantum
limit (SQL), ΔθSQL ¼ 1=

ffiffiffiffi
N

p
. Since N is generally con-

strained by the experimental apparatus or by the onset of
unwanted systematic effects due to the high density, the
possibility to overcome the SQL by engineering specific
quantum correlations [7] between the atoms is attracting
increasing interest [8].
Entanglement-enhanced atom interferometry [8–13] has

mainly focused on atomic clocks [14–20] and magnetom-
eters [21–26]. Free-fall atom interferometers have received
less attention [27–33]. The main reason is that these mea-
surement devices have stringent practical requirements: in
particular, the generation of atomic entanglement must be
compatible with the splitting of the atomic wave packets in
momentum modes. Bose-Einstein condensates (BECs)
have been pinpointed as optimal candidates for the realiza-
tionof entanglement-enhanced free-fall atom interferometers
]31 ]. Indeed, the narrow momentum dispersion guarantees

ideal splitting [34] and entanglement can be generated via
particle-particle interactions [8–10,31–33,35,36]. However,
since the interaction vanishes due to free-fall expansion,
current theoretical studies predict only a modest sub-SQL
sensitivity gain [31].
In this Letter, we overcome these limitations by propos-

ing a novel method to enhance the generation of entangle-
ment in free-fall atom interferometers using BECs. The key
idea consists of focusing the matter waves through the rapid
application of an external trapping potential in analogy to
optics, where the trap plays the role of a converging lens.

Going through the focal point increases the matter-wave
density and thus the effective strength of the particle-
particle interactions preparing the atoms in a highly
entangled spin-squeezed state. Considering previous works
on delta-kick collimation [37–42], we designate our tech-
nique “delta-kick squeezing” (DKS). The method is
explored for Raman and Bragg scattering and is made
fully compatible with the requirement of linear atom
interferometer operations. The DKS technique leads to a
substantial phase sensitivity gain beyond the SQL, e.g.,
more than 30 dB in a realistic experimental configuration
with 106 atoms. For Bragg diffraction, in particular, using a
second DKS pulse at the end of the interferometer sequence
allows the realization of a nonlinear readout protocol [43–
51]. In this case, the twisting dynamics generating the spin-
squeezed state is inverted before the final measurement of
the atom number in the two interferometer output ports.
This operation makes the interferometer exceptionally
robust against detection noise.
DKS state preparation protocol.—The preparation step

illustrated in Fig. 1(a) starts with a BEC suddenly released
from an external trap. A short free expansion time T0

dilutes the BEC and guarantees, by applying a first beam
splitter pulse (BS1), the preparation of the quantum super-
position jψ0i ¼ ðjgi þ jeiÞ⊗N=2N=2, with N being the
number of atoms and jgi and jei two momentum states
[52]. Entanglement is then generated via particle-particle
interactions in the BEC, such that jψ0i evolves according
to the one-axis twisting dynamics jψ sqðtÞi ¼ e−iτðtÞŜ

2
z jψ0i

[35,36,53], where τðtÞ ¼ R
t
0 χðt0Þdt0. Notably, the time-

dependent nonlinear coefficient χðtÞ is given by [54]

χRðtÞ ¼ χSðtÞ − χCðtÞ; ð1aÞ
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χBðtÞ ¼ χSðtÞ − 2χCðtÞ; ð1bÞ

for the Raman (R) or the Bragg (B) scattering, respec-
tively. Here, χSðtÞ ¼ g

R∞
−∞ drjϕgðeÞðr; tÞj4=ℏ and χCðtÞ ¼

g
R
∞
−∞ drjϕgðr; tÞj2jϕeðr; tÞj2=ℏ denote the self-phase-

and cross-phase-modulation terms, respectively, where,
ϕgðeÞðr; tÞ carries the spatial evolution of the state jgi
(jei) and are calculated here within a Thomas-Fermi
approximation [54]. For simplicity, in the following we
assume the same intra- and inter-species scattering coef-
ficient g ¼ g11 ¼ g12 ¼ g22 > 0 [58]. The factor 2 in front
of the cross-phase-modulation terms in Eq. (1b) [59,60]
is due to the interference of the two modes [54] and is of
rich consequence. In particular, when the wave functions
overlap, χS and χC are equal and thus χR ≈ 0 in the Raman
case [9,10]. In contrast, during overlap, χB ≈ −χS ≠ 0,
making the one-axis twisting evolution active in the
Bragg case. Furthermore, χB can assume either positive
or negative values (see below), while χR ≥ 0.
The atomic interactions, proportional to the density of

the freely expanding cloud, are vanishing a few millisec-
onds after release and therefore prohibit the generation of
highly entangled states [31]. This problem is overcome
here by switching on, after a preexpansion time texp, a
harmonic trap for a time Δt. This external potential, created
with a single dipole trap [61,62], encompasses the two
spatial modes. It induces a size refocusing that increases
the density of the atomic clouds [Fig. 2(a)] [63] and
thus the effective interaction coefficient τ. Right after
the delta-kick pulse, at time Tτ ¼ texp þ Δt1, a first
mirror pulse (M) is applied. The DKS pulse leads to an
extra relative phase between the two modes [64–66]. A
detailed discussion of its impact and compensation
techniques can be found in [54]. The state preparation
stage ends after an additional time 2T 0

τ, where T 0
τ can be

tuned depending on the specific DKS parameters to

guarantee noninteracting clouds and linear interferome-
ters sequences. Figures 2(a)–2(c) present a realistic
example of state preparation using the DKS [67]: we
show the size of the BEC cloud in Fig. 2(a) and the
nonlinear coefficient χ as a function of time in Fig. 2(b).
The latter clearly shows how χðtÞ is enhanced by the
DKS and is different for Raman and Bragg pulses.
Figure 2(c) shows τ as a function of the DKS pulse
duration Δt. In particular, for Bragg scattering, τ can
have either positive or negative values, depending on Δt.
Atom interferometry with linear readout.—The Mach-

Zehnder interferometer sequence illustrated in Fig. 1(b)
consists of two beam splitters (BS2 and BS3) and a mirror
pulse (M) equally spaced in time by Tθ. We define the
sensitivity gain over the standard quantum limit G ¼
ΔθSNL=Δθ calculated at θ ¼ 0 [68], where θ denotes the
phase accumulated during the interferometer and ðΔθÞ2 ¼
ðΔSzÞ2=ðdhSzi=dθjθ¼0Þ2 is obtained by error propagation
[69]. In the case of an ideal linear interferometer, i.e.,
τAI ¼

R Tiþ2Tθ
Ti

χðt0Þdt0 ¼ 0, with Ti ¼ T0 þ 2Tτ þ 2T 0
τ, the

output state reads jψouti ¼ ÛAIjψ sqi with ÛAI ¼ eiθŜy [69].
The sensitivity gain reads

G ¼ 2 cosðτÞN−1

½4þ ðN − 1ÞðA −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
Þ�1=2 ; ð2Þ

with A ¼ 1 − cosð2τÞN−2 and B ¼ 4 sinðτÞ cosðτÞN−2, upon
an opportune rotation [36] of the squeezed state jψ sqðtÞi at
BS2. The maximum value of G is reached for τopt ≈
1.2N−2=3 [7,36]. In Figs. 2(d) and 2(e), we plot the gain
G as a function of the DKS parameters texp and Δt, for
Bragg and Raman scattering, respectively. While for
Δt ¼ 0, no significant gain can be obtained (G ≈ 1), the
DKS enables the creation of highly entangled input states in
these freely expanding configurations: a large gain is
possible depending on texp and Δt.

(a) (b) (c)

FIG. 1. Complete operation of a DKS-enhanced free-fall atom interferometer. State preparation (a) consists of (i) a first expansion of
the BEC T0, (ii) a beam splitter (BS1), (iii) a DKS of durationΔt1 focusing the matter waves (inset), and (iv) two mirror pulses (M). The
interferometer sequence (b) starts with the beam splitter (BS2) followed by a mirror (M) and ending with a recombining beam splitter
(BS3). The pulses are equally separated in time by Tθ. In a linear detection scheme, the phase is evaluated by counting the number of
atoms at the two output ports. In a nonlinear readout case (c), one applies operations analog to the state preparation. Right before the first
mirror pulse, a second DKS of duration Δt2 is applied and generates an “untwisting” dynamics. The phase is finally evaluated by
counting the number of atoms at the two output ports.
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Atom interferometry with nonlinear readout.—Using the
DKS to tune the sign of the effective interaction for Bragg
scattering can be exploited to realize a nonlinear readout
scheme. After the interferometer sequence, a second DKS
is applied, see Fig. 1(c), such that the output state is now
given by

jψouti ¼ e−iπ=2Ŝye−iτ2Ŝ
2
z ÛAIe−iτ1Ŝ

2
z jψ0i: ð3Þ

Notice that the final rotation e−iπ=2Ŝy is not included in
Fig. 1. We now distinguish the sensitivity gain of the linear
detection G to the nonlinear readout Q. In the case where

τ1 ¼ −τ2 ≡ τ ð4Þ

and θ ¼ 0, the nonlinear readout provides (i) the possibility
to reach a higher sensitivity gain, maxðQÞ > maxðGÞ, with
respect to the linear detection case for sufficiently large
values of τ [Fig. 3(a)] [44], and (ii) a phase magnification
robust against the imperfect detection of the atom number
[Fig. 3(b)] [44,47]. The latter being one of the most critical
limitations in quantum-enhanced atom interferometers [8].
Throughout this Letter, the imperfect detection resolution is
modeled by a Gaussian noise of variance ðΔnÞ2 [8,31].
Satisfying the condition (4) is not straightforward in

quantum systems, as it requires inverting the twisting
evolution that generated entanglement in the probe state.
Such a possibility has been predicted for Rydberg atoms
[44,46] and realized for cold atoms in a cavity [47] and
trapped ions [43,71]. Here the condition (4) can be
naturally satisfied by using Bragg scattering and tuning

(a)

(b)

(c)

(d) (e)

FIG. 2. DKS engineering. (a) Thomas-Fermi (TF) Radii along
the z (Rz) and transverse directions (R⊥) as a function of time
during state preparation [67]. The different laser pulses are
highlighted by the vertical black lines with Tτ ¼ T 0

τ ¼ 5.25 ms
and the DKS time is fixed to Δt ¼ 0.25 ms (vertical blue lines).
(b) Corresponding nonlinear coefficient χðtÞ for Raman and
Bragg scattering. (c) Effective nonlinear coefficient τ as a
function of the DKS duration Δt, during the state preparation
(solid lines) and during the interferometer sequence (dashed). The
vertical line denotes the case shown in (a) and (b). (d),(e) The
sensitivity gain G (color scale) for the Bragg (d) and Raman (e)
configurations as a function of the preexpansion time and DKS
duration. The white lines denote τB ¼ 0 and we distinguish
regions with τB > 0 and τB < 0. Here, G ¼ 40 corresponds to a
variance of 32 dB below the SQL.

(a)

(c)

(b)

(d)

FIG. 3. Nonlinear readout. (a) Sensitivity gain for linear
Gðτ=τoptÞ and nonlinear Qðτ=τoptÞ readout as a function of the
effective nonlinear coefficient, τ ¼ τ1 ¼ −τ2. The vertical lines
denote 0.1τopt and τopt. (b) Sensitivity gain as a function of the
detection noise Δn for linear and nonlinear readout, τ ¼ τopt
(solid) and τ ¼ 0.1τopt (dashed). The number of atoms is
N ¼ 104. (c),(d) The nonlinear coefficient as a function of the
second DKS duration Δt2 (solid blue line). The size of the BECs
are assumed to be constant after BS2 in (c) while they continue to
expand after BS2 in (d). For specific values of Δt2, the nonlinear
coefficient matches −τ1 ≈ −0.1τopt [70].
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the DKS parameters. This is shown in Figs. 3(c) and 3(d)
where we plot τ2 as a function of the DKS durations Δt2
and compare it to −τ1 for different Tθ. The condition (4)
can be satisfied in realistic experimental conditions. In
particular, Fig. 3(c) shows the case where the sizes of the
BECs are kept constant after BS2 until the second DKS
during the nonlinear readout. This configuration can be
engineered through the action of a delta-kick collimation
pulse [37–42] before BS2 when the two clouds are dilute
enough. This manipulation leads to record low-expansion
rates as low as 50 pK [40,42], enabling interferometer
sequences longer than Tθ ¼ 1 s. In this configuration, Δt2
is independent of Tθ and allows one to perfectly “untwist”
the state with a second DKS pulse of some hundreds of
microseconds. In the case where the BECs kept expanding
after BS2, Fig. 3(c) can be interpreted as Tθ ¼ 0 and
increased Tθ requires shorter DKS pulse [Fig. 3(d)].
In Fig. 4(a), we give a more complete overview of the
nonlinear readout parameters beyond the condition (4).
There, we plot the sensitivity gainQ as a function of τ1 and
−τ2. Slight unbalanced conditions (namely, jτ1 þ τ2j≳ 0)
still enable high sensitivity gains.
Impact of residual mean-field interactions.—In the

presence of a small residual interaction after the state
preparation, the interferometer transformation is described

by ÛAI ¼ eiθŜyeiτAIŜ
2
y in Eq. (3). While the interactions

during the interferometer largely degrade the sensitivity
gain in a linear detection scheme (GNL ≤ GL [60], the labels
L and NL distinguish between a linear and nonlinear
interferometer sequence, respectively), this is surprisingly
not the case when exploiting the nonlinear readout. In
Figs. 4(b) and 4(c), we plotQNL as a function of τ1 and −τ2
for τAI ¼ �0.1τ1 and contrast it to the linear case (QL, for
τAI ¼ 0) in Fig. 4(a). We conclude that sub-shot-noise
sensitivities are obtained for a small imbalance between τ1
and −τ2 when signðτÞ ≠ signðτAIÞ [Fig. 4(b)] or large
imbalance when signðτÞ ¼ signðτAIÞ [Fig. 4(c)]. To empha-
size these results, we plot in Fig. 4(d) the sensitivity gain for
the specific case, τ1 ¼ −τ2. Here if signðτÞ ≠ signðτAIÞ, we
find a parameter range where QNL ≥ QL > 1, while if
signðτÞ ¼ signðτAIÞ, QNL < QL. This result is confirmed
analytically in the regime of low interactions where [54]

ðQNLÞ2 ¼ 1

4

�
ð4τ − 3τAIÞ

N
2
− ð2τ − τAIÞ

�
2

: ð5Þ

In Fig. 4(e), we plot the corresponding robustness to atom
number resolution of the nonlinear readout for τ ¼ 0.1τopt
and verify that there is no significant gain difference
between the different configurations. While the presence
of residual interactions and imperfect detection prohibit
sub-SQL sensitivity with linear detection schemes, non-
linear readout enables the creation of a quantum-enhanced
interferometer sequence, in the regime of low interactions,
robust against imperfect detection.
Conclusions and discussion.—In this Letter, we have

proposed and studied a phase-space engineering technique
to focus matter waves that (i) substantially enhances the
amount of entanglement in a free-fall atom interferometer
and (ii) realizes, with Bragg diffraction, a nonlinear readout
protocol making the interferometer sensitivity extraordi-
narily robust against detection noise. This robustness is
crucial in atom interferometers with nonclassical states to
avoid dramatic effects of imperfect atom number detection
on sub-SQL sensitivities. While it is also possible to tune
the atomic scattering length across a Feshbach resonance
with external magnetic field, the DKS technique has the
key advantage of being independent from the scattering
length, sensitivity to magnetic field, and initial density of
the atomic clouds. Furthermore, the realization of nonlinear
readout scheme with Feshbach field would require one to
tune the s-wave scattering length from repulsive to attrac-
tive interactions and may induce BEC collapse.
Our predictions have been obtained for realistic exper-

imental parameters and assuming ideal beam splitter and
mirror pulses. Different effects may degrade the sensitivity
of the interferometer as atomic losses [72,73], mode
mismatch [74], and shape deformation [75], due to
BEC crossing and residual interaction during splitting
pulses [76]. A careful analysis of these effects depends

(a) (b) (c)

(d) (e)

FIG. 4. Robustness of the nonlinear readout. Interferometer
sensitivity gain as a function of τ1 and τ2 for linear (QL) (a) and
nonlinear (QNL) interferometer sequence with τAI ¼ 10%τ1 (b)
and τAI ¼ −10%τ1 (c). HereQ ¼ 10ð3Þ correspond to a variance
of 20 (9.5) dB below the SQL. (d) Sensitivity gain as a function of
τ ¼ τ1 ¼ −τ2. The case τ ¼ 0.1τopt corresponds to the circles in
(a)–(c) and is highlighted by the vertical line. (e) Sensitivity gain
as a function of the detection noise parameter Δn and for
τ ¼ 0.1τopt. In all N ¼ 103.
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on the specific interferometer configuration and is beyond
the scope of this work. The assumption of harmonic traps to
realize the DKS is justified for BEC sizes and the proposed
spatial separations. Within these assumptions, a sensitivity
gain of more than 30 dB beyond the SQL with 106 atoms is
predicted for both Bragg and Raman diffraction. Larger
harmonic traps [61,62] could enable even higher sensitiv-
ity gains.
Our technique can boost the sensitivity of a BEC

gravimeter [77,78] of 106 atoms to that of an ensemble
with a 100-fold flux. Our DKS technique thus promotes
BEC ensembles in free-fall atom interferometers to primary
quantum-enhanced sensors to explore timely physics quests
such as testing general relativity principles [79,80] or atom-
interferometric gravitational-wave detection [81].
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Ertmer, C. Lisdat, L. Santos, A. Smerzi, and C. Klempt,
Improvement of an Atomic Clock Using Squeezed Vacuum,
Phys. Rev. Lett. 117, 143004 (2016).

[17] E. Pedrozo-Peñafiel, S. Colombo, C. Shu, A. F. Adiyatullin,
Z. Li, E. Mendez, B. Braverman, A. Kawasaki, D. Akamatsu,
Y. Xiao, and V. Vuletić, Entanglement on an optical atomic-
clock transition, Nature (London) 588, 414 (2020).
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