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Various two dimensional quantum gravity theories of Jackiw-Teitelboim (JT) form have descriptions as
random matrix models. Such models, treated nonperturbatively, can give an explicit and tractable
description of the underlying “microstate” degrees of freedom, which play a prominent role in regimes
where the smooth geometrical picture of the physics is inadequate. This is shown using a natural tool, a
Fredholm determinant detð1 −KÞ, which can be defined explicitly for a wide variety of JT gravity theories.
To illustrate the methods, the statistics of the first several energy levels of a nonperturbative definition of JT
gravity are constructed explicitly using numerical methods, and the full quenched free energy FQðTÞ of the
system is computed for the first time. These results are also of relevance to quantum properties of black
holes in higher dimensions.

DOI: 10.1103/PhysRevLett.127.181602

Introduction.—Jackiw-Teitelboim (JT) gravity [1] is a
two dimensional model of gravity coupled to a scalar ϕ,
with Euclidean action on a spacetime manifold M:
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where gij is the metric with determinant g, R is the Ricci
scalar, K is the trace of the extrinsic curvature for induced
metric hij on the boundary ∂M, and ϕb is the boundary
value of ϕ. The constant S0 multiplies the Einstein-Hilbert
action, which yields the Euler characteristic χðMÞ ¼
2 − 2g − b, g counting handles and b boundaries. The
partition function of the full quantum gravity theory ZðβÞ at
some inverse temperature β ¼ 1=T is given by the path
integral overMwith a ∂M of length β. It has a topological
expansion ZðβÞ ¼ P∞

g¼0 ZgðβÞ, where ZgðβÞ has a factor

eχðMÞS0 .
JT gravity is interesting not just as a solvable toy model

of gravity, but also because it is a universal sector of the low
T near-horizon quantum dynamics of a wide class of higher
dimensional black holes and branes [2], including ones in
four dimensional asymptotically flat spacetimes. S0 is the
extremal (T ¼ 0) Bekenstein-Hawking [3] entropy and ϕ
parametrizes the leading finite T deviation of the geometry

from extremality. Insights about this model therefore
directly pertain to important fundamental questions about
quantum gravity and black holes in broader settings.
Solving the model (1) at leading (disc) order gives [4]

Z0ðβÞ ¼
eS0e

π2

β

4
ffiffiffi
π

p
β

3
2

; ρ0ðEÞ ¼ eS0sinhð2π
ffiffiffiffi
E

p
Þ=4π2; ð2Þ

where the spectral density ρ0ðEÞ comes from the Laplace
transform: Z0ðβÞ ¼

R∞
0 ρ0ðEÞe−βEdE. This model can be

explicitly solved to any order to yield ZgðβÞ [also yielding
corrections to ρ0ðEÞ]. Correlations of multiple ZðβÞ can
also be obtained perturbatively. This was shown (for
various types of JT gravity model) in Refs. [5,6], along
with a striking equivalence (recalled below) to models of
random N × N matrices at large N, where the topological
expansion parameter e−S0 ∼ 1=N.
This Letter’s results go well beyond this topological

expansion to uncover nonperturbative physics (building on
a program of work begun in Ref. [7]) computing details of
the individual underlying energy levels of the spectrum.
This reveals the physics of the microscopic degrees of
freedom of the quantum gravity theory: the underlying
black hole microstates. The first six levels are shown in
Fig. 1. For illustration, the plots are for e−S0 ¼ 1. For a
fixed reference value of E, smaller e−S0 (larger extremal
entropy S0 ∼ logN) yields an increase in the number of
levels found to the left, consistent with their microstate
interpretation. A key observation is that the knowledge of
the spectrum is fundamentally statistical, increasingly so at
lower energies [8]. At higher E, the energy peaks become
more sharply defined (their variance decreases), and
also form a continuum. Here, the spacetime language
(the perturbation theory described above) is a good
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approximation. Low E is increasingly nonperturbative, a
spacetime interpretation falls short, and the statistical
description cannot be neglected: geometry and statistics
are dual phenomena here.
Once the full spectrum and statistics are known, many

key properties of the model can be computed. An example
is the quenched free energy FQðTÞ ¼ −β−1hlogZðβÞi,
needed to compute thermodynamic quantities down to
low T. Its computation has been discussed frequently
[10–13], but so far not completed. Later in this Letter,
FQðTÞ will be computed for the first time.
Perturbative matrix models.—References [5,6] showed

that the full topological expansion of a large class of models
of JT gravity is captured by certain random matrix models
in the “double-scaling limit” [14,15]. In the simplest matrix
models, the probability distribution of the N × N matrixM
is pðMÞ ¼ e−TrVðMÞ with Gaussian VðMÞ ¼ 1

2
M2 being the

most famous prototype [17]. A more general polynomial
VðMÞ ¼ P

p gpM
p is of interest for studying gravity. (See

e.g., Ref. [18] for a review.) Working at large N, the
Feynman diagrammatic expansion of the matrix model
partition function Z̃ ¼ R

pðMÞdM can be viewed [19] as
tessellations of 2D Euclidean spacetimes, each order in the
1=N expansion corresponding to the topology upon which
the diagrams can be drawn. The double-scaling limit
combines sending N → ∞ with tuning the couplings gp
to critical values such that surfaces large compared to the
scale of the tessellation dominate, yielding universal
continuum physics.
At large N the matrix eigenvalues λi can be described

with a smooth coordinate λ. For an appropriate choice of
VðMÞ, they occupy a finite segment of the real λ line, with a
spectral density ρðλÞ. The Laplace transform of ρðλÞ is the

expectation value of a “loop operator” hTr½e−lM�i, which
makes a loop of length l in the tessellations. The double-
scaling limit focuses on the scaling region in the neighbor-
hood of an end point [20] (say, λ ¼ λ0), magnifying it while
sending the other end to infinity, i.e., λ ¼ λ0 þ Eδp, as
parameter δ → 0, for some p > 0, defining the scaled
density ρðEÞ.
In perturbation theory, everything at higher genus is

determined by the leading (disc) order results by “topo-
logical recursion” properties [21] equivalent to certain
“loop equations.” Reference [5] showed that the JT gravity
partition function ZðβÞ is equivalent to a Hermitian matrix
model loop expectation (of length β): at leading order,
ρ0ðEÞ was set as Eq. (2), with the parameter identification
e−S0 ∼ 1=N, and they proved that order by order the matrix
model correlation functions that follow precisely match
those obtained from the gravity path integral on manifolds
M, a highly nontrivial and remarkable result. However,
nonperturbative contributions to ρðEÞ are beyond the reach
of this recursive approach.
Nonperturbative matrix models.—The direct nonpertur-

bative completion of Ref. [5]’s Hermitian matrix model
definition of JT gravity has instabilities, which can be
deduced [5,7] by noting that perturbatively it is a combi-
nation [22] (alternatively, a large k limit [5]) of the family of
ð2k − 1; 2Þ “minimal string” models: the k even sector was
long known to be nonperturbatively unstable due to
eigenvalue tunneling to infinite negative values. However
Ref. [7] defined a nonperturbative completion of the JT
gravity matrix model using double-scaled complexmatrices
M for which the potential is built from MM† [23]. It is a
model of a Hermitian matrix with manifestly positive λ.
Perturbatively identical to Ref. [5]’s model, it is non-
perturbatively stable. [24].
The difference between the two types of models is

visible in their orthogonal polynomial formulation. The
standard Hermitian matrix model can be written entirely in
terms of a system of N polynomials PiðλÞ, orthogonal with
respect to the measure dλe−VðλÞ. They are related [e.g., for
even VðλÞ] according to λPiðλÞ ¼ Piþ1ðλÞ þ RiPi−1ðλÞ.
The Ri satisfy a recursion relation determined by VðλÞ.
Computing the Ri allows for the full solution of the matrix
model [19]. As N → ∞, PiðλÞ and Ri become functions
of the coordinate X ¼ i=N ∈ ½0; 1�: PiðλÞ → PðX; λÞ;
Ri → RðXÞ. After double scaling to an end point, scaled
parts of all the key quantities survive to define the physics:
X, RðXÞ, and PðX; λÞ have scaled pieces x; uðxÞ, and
ψðx; EÞ (where x ∈ R), and Ri’s recursion relation
becomes a differential equation for uðxÞ that contains all
the information about the model. The ψðx; EÞ are wave
functions of an Hamiltonian that emerges as the scaled part
of λ (acting as an operator inside the matrix model integral):

H ¼ −ℏ2
∂2

∂x2 þ uðxÞ: ð3Þ
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FIG. 1. Spectral density ρðEÞ (solid black), ρ0ðEÞ (blue
dashed), and probability densities (also cumulative probabilities,
dashed) of the first six states of the JT gravity microstate
spectrum. Inset: close-up of ρðEÞ and distributions for the ground
state, with hE0i ≃ 0.659. Note that ℏ ¼ e−S0 ¼ 1 here.
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Here, ℏ is the scaling piece of the topological expansion
parameter 1=N. Solving the double-scaled matrix model
boils down to determining uðxÞ, defining a quantum
mechanics problem from which everything can be
computed:

HψðE; xÞ ¼ EψðE; xÞ: ð4Þ

In fact, the loop operator in this language is [26]

ZðβÞ ¼
Z

0

−∞
dxhxje−βHjxi: ð5Þ

Putting
R
dψ jψihψ j ¼ 1 into Eq. (5) and using Eq. (4) with

ψ ≡ hψ jxi gives ZðβÞ ¼ R
dEρðEÞe−βE with

ρðEÞ ¼
Z

0

−∞
jψðE; xÞj2dx; ð6Þ

i.e., knowing the complete ψðE; xÞ can be used to construct
the full spectral density to all orders and beyond.
The Gaussian case (k ¼ 1) illustrates the difference

between the two types of model. In the Hermitian matrix
model, the unscaled PiðλÞ are Hermite functions. In the
scaling limit they become [27] Airy functions
ψðE; xÞ ¼ ℏ−2=3Ai½−ðEþ xÞℏ−2=3�, which satisfy Eq. (4)
for uðxÞ ¼ −x everywhere. Using them in Eq. (6) gives
the full nonperturbative density: ρðEÞ ¼ ℏ−2=3½Ai0ðζÞ2−
ζAiðζÞ2�, with ζ ≡ −ℏ−2=3E, where f0 ≡ ∂f=∂ζ. Large E
gives the disc order result ρ0 ¼ E1=2=ðπℏÞ, supported only
on E ≥ 0, while the full result is also nonzero on E < 0. By
contrast, for the complex matrix model, similar steps [23]
give a nonlinear equation for uðxÞ:

uR2 −
ℏ2

2
RR00 þ ℏ2

4
ðR0Þ2 ¼ 0; ð7Þ

where R ¼ uðxÞ þ x. The solution of interest has uðxÞ ¼
−x for x → −∞ but uðxÞ ¼ 0 for x → þ∞. So for large
energies the behavior of the wave functions (in the x < 0
regime, which corresponds to perturbation theory) is again
like the “Airy model” form above. The physics is pertur-
batively identical. However the wave functions join on to a
Bessel-like behavior for x > 0, which becomes increas-
ingly significant at low energies. The resulting fully non-
perturbative ρðEÞ resembles that of the Airy model, but
deviates at small E, truncating at E ¼ 0 [7].
There is an analogous model for any k with this kind of

behavior, and Refs. [7,28] showed how to build a non-
perturbative completion of JT gravity using them. The
equation for uðxÞ is again of the form (7) but with a more
complicated form for R (which is not needed here).
Solving it to leading order gives a u0ðxÞ that yields the
JT spectral density (2), with ℏ ¼ e−S0 . Improving uðxÞ
order by order (expanding about large x < 0 perturbation

theory) yields the identical physics that Ref. [5] con-
structed. Reference [28] found (numerically, to good
accuracy), the full solution for uðxÞ, determining H, and
then solved the spectral problem to yield wave functions
ψðE; xÞ. The integral (6) yielded the nonperturbative ρðEÞ,
plotted in Fig. 1 (solid black curve). At large E it
asymptotes to the classical result (2) (dashed line), but
at small E there are undulations that are invisible in
perturbation theory, precursors of the underlying micro-
physics. [29].
Detailed microphysics.—It is possible to uncover much

more, using new powerful tools. Fredholm determinants
and their associated kernels have been widely used in the
statistical physics literature to study random matrices [32].
In the scaling limit, the core object is the “kernel,” built
from the ψðx; EÞ as

KðE;E0Þ ¼
Z

0

−∞
ψðE; xÞψðE0; xÞdx: ð8Þ

In fact, its diagonal has already played a role, determining
ρðEÞ in Eq. (6). Clearly there is a lot more information in its
off-diagonal terms. It is the context of the Fredholm deter-
minant construction that gives K its kernel moniker. In
problems of the form [33]: fðEÞ − R

b
a KðE;E0ÞfðE0ÞdE0 ¼

gðEÞ, on some interval ða; bÞ (or union of intervals) in the E
plane, the properties of detðI −KÞ are important. K is the
integral operator with kernel KðE;E0Þ. [The random matrix
and mathematics literature is filled with various kinds of
kernel of interest (Airy, Bessel, sine, etc.). This Letter’s
studies of JT gravity now add some new kernels to the
menagerie that also may be of interest.]
The Fredholm determinant can be used as follows: for

the first energy level (labeled henceforth as the zeroth, for
the ground state E0 of the JT gravity system), the
probability of finding no eigenvalues on the interval
ð0; sÞ (chosen since the lowest possible energy is zero)
is Eð0; sÞ ¼ detðI −Kjð0;sÞÞ. This is a cumulative proba-
bility density function (CDF). The probability density
function (PDF) for finding an energy is Fð0; sÞ ¼
−dEð0; sÞ=ds. [For orientation, for the Airy model the
interval would be ð−∞; sÞ, and using the Airy kernel yields
the famous Tracy-Widom distribution [34] of the smallest
eigenvalue. Here, the JT gravity system will reveal a new
kind of smallest eigenvalue distribution.] For the nth energy
level, the CDF on ð0; sÞ is (in a nonstandard notation)

Eðn; sÞ ¼
Xn
j¼0

ð−1Þj
j!

dj

dzj
detðI − zKjð0;sÞÞ:

����
z¼1

: ð9Þ

Correspondingly, the PDF is Fðn; sÞ ¼ −dEðn; sÞ=ds.
The major challenge now is to compute the determinant

of this infinite dimensional operator. This requires much
care, being prone to severe numerical difficulties even
though the problem is effectively discrete (∼700 energies
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were used). The impressivework of Ref. [35], showing how
to use quadrature methods for such tasks, was extremely
useful: using Clenshaw-Curtis quadrature to break up
the interval into m points ei and compute weights wi

(i ¼ 1 � � �m), an integral
R
s
0 fðEÞdE would be computed asP

m
i wifðeiÞ. So similarly here

detðI − zKjð0;sÞÞ → det½δij − zw1=2
i Kðei; ejÞw1=2

j �: ð10Þ

If the ψðE; xÞ are known very accurately (as for, e.g., Airy
and Bessel kernels) the method gives impressive results
with small values of m such as 8 or 16. Here, the ψðE; xÞ
are numerical solutions to an eigenstate problem for which
the potential uðxÞ is itself a numerical solution to a (15th
order [28]) nonlinear equation, so naturally some accuracy
challenges were encountered. However, they can be sur-
mounted well enough to get very good results for the JT
gravity kernel, with m ¼ 128. [36].
The result for the zeroth level (the ground state E0) is the

focus of the inset of Fig. 1. A small amount of smoothing
has been applied to remove numerical noise. To the left, at
zero, the CDF Eð0; sÞ shows that there is a nonzero (but
small) chance of finding E0 there, falling steadily to zero to
the far right with the increasing unlikelihood of finding E0

at very high energies. The PDF Fð0; sÞ is also shown in the
inset, peaking at ∼0.763. This distribution’s mean gives the
average ground state of the ensemble as hE0i ≃ 0.659.
Computing the results for higher levels is straightforward,
although numerical inaccuracies in finding the first level
get successively amplified with each level. The first six are
shown in the main part of Fig. 1. What has been uncovered
here with the Fredholm determinant technique are the
explicit probability peaks for individual energy levels that,
when added together, produce the previously found non-
perturbative undulations in the spectral density (black line).
Many key quantities can now be computed using this
information, as will be demonstrated next [37].
Quenched free energy.—It is important to compute the

quantity FQðTÞ ¼ −β−1hlogZðβÞi for JT gravity, but it is
difficult, as discussed in Ref. [10], which also pointed out
that connected diagrams with multiple boundaries (“replica
wormholes”) should play a crucial role. Reference [11]
suggested that in addition a nonperturbative formulation
was needed, e.g., a matrix model. There have been various
useful partial results from toy models [12,13], at low T. The
results for the full spectrum obtained here now makes
computation of FQðTÞ rather straightforward.
A numerical computation that simply directly samples

the randommatrix ensemble can be done in Gaussian cases,
as done in Ref. [12]. However, the matrix model for JT
gravity has exotic probability distributions, not readily
simulated on a computer, so such an approach seems
doomed here. Happily, the individual probability distribu-
tions for each level can now be generated by reverse
engineering the new results for the Eðn; sÞ, which (recall)

are CDFs. A key result from the theory of statistics is that
samples from any PDF can be generated from uniform
probability samples by mapping via the associated CDF.
So, to build a representative sample partition function to
use for ensemble averaging, generate the nth energy level
En with the appropriate probability [using uniform PDFs
and mapping with the CDF Eðn; sÞ to sample the PDF
Fðn; sÞ]. Then compute log½ZðβÞ� ¼ logðPn e

−βEnÞ. This
was done for an ensemble of just 5000 samples, and then
averaged. For contrast, the annealed quantity FAðTÞ ¼
−β−1 loghZðβÞi can be computed too (averaging the par-
tition function over the ensemble and taking the logarithm
at the end).
Using just the first six levels yields the inset of Fig. 2.

As higher levels are added, the details of the curves settle
swiftly. Only successively higher T details are affected by
adding successively higher levels, the process asymptoting
to the classical result at large T. In the main plot of Fig. 2 is
a result with 150 levels. It is constructed by approximating
the Eðn; sÞ for levels above about n ¼ 10. In this regime
the approximation is already very much under control. The
point is that even by six levels (see Fig. 1), the peaks have
narrowed and overlap significantly as the system returns to
the continuum (classical) regime. The n > 10 peaks are
well approximated by narrow Gaussians, with their loca-
tion, mean, and standard deviation determined by the
classical curve (2). So their CDFs (error functions for
Gaussians) were used for high levels. To test the compu-
tation, the red dashed line is the annealed FAðTÞ computed
using the ZðβÞ obtained by simply Laplace transforming
ρðEÞ (integrated to the appropriate cutoff energy, the 150th
level). The agreement with the result computed by direct
ensemble averaging (red crosses) is remarkably good,
confirming the accuracy of the result for FQðTÞ. Overall,
rather nicely, FQðTÞ is monotonically decreasing [i.e., the
entropy SðTÞ is manifestly positive], with zero slope at
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FIG. 2. The quenched and annealed free energies of JT gravity,
computed using direct sampling (see text). As T → 0, FQðTÞ
lands at hE0i ≃ 0.659. Here, ℏ ¼ e−S0 ¼ 1.
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T ¼ 0, corresponding to entropy S0 at extremality. This
result also confirms Ref. [11]’s suggestion that the replica
symmetry breaking transition conjectured in Ref. [10] does
not occur.
Final remarks.—This Letter’s results (with several JT

supergravity examples to appear) demonstrate that random
matrix models of JT gravity are completely tractable
models of emergent geometry, a key quantum gravity
phenomenon. There is a crossover from smooth spacetime
geometry [large E (or T) in Fig. 1 (or 2)] to a regime [small
E (or T)] where spacetime is not enough, and a description
in terms of individual discrete microstates (with wide
variance) takes over. The key tool used here was the
Fredholm determinant, built from the wave function
ψðE; xÞ. Interestingly, ψðE; xÞ has an interpretation [38]
as a type of D-brane probe. So in a sense, the Fredholm tool
is a D-brane probe that detects an increased spreading out
or variance as it moves to lower energies. This is reminis-
cent of the D-brane probe involved in the “enhançon
mechanism” [39] in higher dimensions, a connection worth
exploring.
Finally, the microstates uncovered in detail here also

model those of the higher dimensional black holes whose
near-horizon low T dynamics is controlled by a JT gravity.
It will be interesting to see what other features of quantum
gravity and black hole physics might be accessible using
random matrix model technology.
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