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We resolve the fate of the two original apparent horizons during the head-on merger of two nonspinning
black holes. We show that, following the appearance of the outer common horizon and subsequent
interpenetration of the original horizons, they continue to exist for a finite period of time before they are
individually annihilated by unstable marginally outer trapped surfaces (MOTSs). The inner common
horizon vanishes in a similar, though independent, way. This completes the understanding of the analog of
the event horizon’s “pair of pants” diagram for the apparent horizon. Our result is facilitated by a new
method for locating MOTSs based on a generalized shooting method. We also discuss the role played by
the MOTS stability operator in discerning which among a multitude of MOTSs should be considered as
black hole boundaries.
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It is common practice to picture the merger of two black
holes according to the famous pair of pants diagram, which
describes the evolution of the event horizon during the
merger. But what does the analogous picture for the
apparent horizon (AH) look like? While the evolution of
the event horizon has been understood for nearly half a
century [1,2], the complete evolution of apparent horizons
during a merger has remained unresolved.
While the event horizon is well suited to theoretical

analyses, its teleological nature makes it less useful in
highly dynamical or practical situations. In numerical
simulations of mergers, marginally outer trapped surfaces
(MOTSs) are used instead. A closed two-dimensional
spacelike surface S is a MOTS if light rays emitted normal
to S are neither converging nor diverging in the outward
direction. The outermost MOTS on a given slice is
commonly called the apparent horizon. However, despite
their importance as a quasilocal characterization of black
holes, there remain many unresolved questions pertaining
to the evolution of interior MOTSs during a merger.
While it is true that the details of what occurs within the

event horizon (where all MOTSs are located) is causally
disconnected from the rest of the Universe, this does not
mean that interior evolution is irrelevant. At the very least,
it is conceptually important to understand to what extent
MOTSs provide a physically reasonable description of the
merger. Furthermore, the existence of a connected sequence
of MOTSs between the initial and final states of the merger
provides a means for physical properties [3–5] to be tracked
throughout the full evolution. Finally, one may hope that

there exist correlations between the dynamics in the strong
field regime and properties of the distant spacetime. Indeed,
such correlations have been shown to exist under certain
circumstances [5–9].
The behavior of AHs during the initial stages of a merger

is well known [1]. Initially there are two individual AHs
corresponding to two separate black holes. When these
holes become sufficiently close to one another, a common
AH forms surrounding the individual horizons, which
continue to exist. This common horizon immediately splits
into an inner and outer branch. The outer branch grows in
area and becomes more symmetric, ultimately asymptoting
to the event horizon. The inner common MOTS moves
inward, becoming increasingly distorted.
The bifurcation of the common horizon, combined with

the fact that there are known exact solution examples of
MOTSs weaving back and forth through time [10,11], led
to the speculative idea that all MOTSs involved in the
merger may be different components of a single world tube
that weaves its way through time [12,13]. However, in most
situations of interest, MOTSs must be located numerically.
Therefore, improvements in the understanding of the
evolution of MOTSs during a merger have been in lockstep
with improvements in the numerical methods used to locate
them. For this reason, progress beyond this qualitative
speculation was limited.
With the advent of more robust numerical finders for

MOTSs [14], it is now possible to go beyond these initial
stages of the merger and better understand the interior
dynamics. The inner common MOTS continues to move
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inward and coincides with the union of the two AHs of the
individual black holes at the moment these horizons touch.
This can be interpreted as an instantaneous (nonsmooth)
merger of the three MOTSs [15–18]. All continue to exist
beyond this point: the two individual horizons interpenetrate
and the inner common MOTS develops self-intersections.
Identifying these self-intersections was not possible with
previous MOTS finders, as these had implicitly assumed
that the MOTSs are “star shaped.” These seemingly exotic
surfaces have subsequently been shown to be rather generic.
For example, there are an infinite number of self-intersecting
MOTSs present within the horizon of the Schwarzschild
black hole [19]. This raises the question of whether exotic
MOTSs are also present during a black holemerger andwhat
role they might play.
In this Letter, we report three closely connected results.

First, using a novel MOTS finder, we identify for the first
time an apparently infinite number of MOTSs present in
certain Brill-Lindquist initial data. We then discuss the role
that these new MOTSs play in resolving the final fate of the
AHs of the two original black holes, finding that there do
exist world tubes weaving back and forth through time.
However, instead of a single smooth world tube, we find
multiple distinct ones. Finally, we discuss the stability of
these surfaces. The stability operator characterizes key
merger processes and identifies which MOTSs should be
thought of as black hole boundaries.
A multitude of MOTSs.—To locate MOTSs, we employ a

novel shooting method. The procedure, while in the
tradition of methods first developed in the 1970s [20], is
more versatile and applies to nonrotating though otherwise
general axisymmetric configurations (see companion paper
[21]). Implemented in [22], it can be applied to both
analytically known initial data, as well as to slices obtained
from numerical simulations. It overcomes a limitation of
the method introduced in [14], as it does not require an
initial guess for the shape of the surface to be located. As
such, it is ideally suited for locating axisymmetric MOTSs
with geometries that are both unexpected and arbitrarily
complicated.
The approach exploits axisymmetry to reduce the prob-

lem of locating a two-dimensional surface to that of
determining a curve γ, which we call a “MOTSodesic.”
The full MOTS is the revolution of γ. Given an axisym-
metric three surface fΣ; hij; Dig, the arclength parame-
trized curve γðsÞ in the two-dimensional space orthogonal
to the rotational Killing field φ ¼ ð∂=∂ϕÞ is a MOTSodesic
if it satisfies the two coupled second-order ordinary differ-
ential equations

TaDaTb ¼ ½NcDcðlnRÞ þ ku�Nb ≡ κþNb: ð1Þ

Here Ta is the unit-length tangent vector to γ, Na is its unit-
length normal, R is the circumferential radius, and ku is the

trace of the extrinsic curvature of S with respect to the unit
timelike normal u to Σ.
Henceforth, we restrict our considerations to the head-on

merger of two nonspinning black holes. For this purpose,
we use Brill-Lindquist (BL) initial data [23]. These
describe a Cauchy slice Σ that is time symmetric, i.e.,
with vanishing extrinsic curvature. The three-dimensional
metric is conformally flat, hij ¼ ψ4δij, where δij is the flat
metric and the conformal factor is

ψ ¼ 1þ m1

2r1
þ m2

2r2
; ð2Þ

where m1;2 are the bare masses of the black holes and r1;2
are the (coordinate) distances to the respective punctures.
Parametrizing γ∶ ðρ; zÞ ¼ ðPðsÞ; ZðsÞÞ relative to cylin-

drical coordinates ðρ; z;ϕÞ, the MOTSodesic equations
become

P̈ ¼
_Z2

P
þ 4ψρ

ψ5
−
6 _Pð _Pψρ þ _Zψ zÞ

ψ
; ð3Þ

Z̈ ¼ −
_Z _P
P

þ 4ψ z

ψ5
−
6 _Zð _Pψρ þ _Zψ zÞ

ψ
; ð4Þ

where subscripts denote partial derivatives and the
arclength parametrization reads ψ4ð _P2 þ _Z2Þ ¼ 1. The
equations are solved in Mathematica using the shooting
method (and the resulting MOTSs confirmed using the
methods of [14]).
In addition to the four standard MOTSs, we find a large

number of more exotic MOTSs—see Fig. 1 for an example.
In BL initial data, all new MOTSs are found between the

FIG. 1. MOTSs present in Brill-Lindquist initial data for
m1 ¼ 0.2, m2 ¼ 0.8, and separation d ¼ 0.65. Left: the “stan-
dard” horizons consisting of the outer AH (blue), inner common
MOTS (green), and AHs of individual black holes (orange and
purple) reproduced using the shooting method. Right: an example
of a new exotic MOTS.

PHYSICAL REVIEW LETTERS 127, 181101 (2021)

181101-2



outer AH and the two original AHs and can enclose either,
both, or neither of the two punctures. These surfaces tend to
closely “hug” the outer and/or the individual AHs, but can
fold a seemingly arbitrary number of times. By carefully
tuning initial conditions, we find more and more MOTSs.
The number is likely infinite.
The fate of the apparent horizons.—The existence of new

MOTSs in BL initial data raises a number of important
questions. First, are these surfaces generic during amerger, or
are they artifacts of the symmetry of the initial data? Second,
if generic, what role (if any) do these surfaces play in the
merger? Finally, with a seemingly infinite number ofMOTSs
present in a merger, how can one discern physically relevant
surfaces that demarcate black hole boundaries?
To address these questions, we numerically evolve the

initial data. Here we start with total Arnowitt-Deser-Misner
mass M ¼ m1 þm2 ¼ 1, mass ratio q ¼ m2=m1 ¼ 2 and
distance parameter d ¼ 0.9, corresponding to two black
holes that are initially separate with no common AH or any
of the new MOTSs present. To track evolving MOTSs, we
use the method described in [14,16] and available from
[22]. To locate new MOTSs, we use not only the shooting
method described earlier (detailed in our companion paper
[21]) but also the ansatz that MOTSs only appear or
disappear in pairs. When a MOTS cannot be tracked into
the future or past, we look for a “nearby” one with which it
might annihilate or bifurcate.

We perform our simulations with the Einstein Toolkit
[24,25] and set up initial conditions using TwoPunctures
[26]. The Einstein equations are evolved in the BSSN
formulation using an axisymmetric version of McLachlan
[27], which uses Kranc [28,29] to generate C++ code. We
work with a 1þ log slicing and a Γ-driver shift condition
[30,31]. Most results are obtained with a spatial grid
resolution of 1=Δx ¼ 720. Lower resolutions and shorter
simulations with resolutions up to 1=Δx ¼ 1920 are used to
assess convergence and resolve certain features (see [16,32]
for more details).
Our main results are illustrated in Fig. 2, which shows

the area evolution of several relevant MOTSs, and Fig. 3,
which shows those MOTSs at a particular moment of time:
Souter is the common AH, Sinner is the inner common
MOTS, and S1;2 correspond to the AHs of the individual
black holes. Beyond these standard MOTSs, we find many
new MOTSs; a selection appears in Fig. 2. The new
surfaces all form through bifurcations, splitting into outer
and inner branches. Hence, exotic MOTSs are not solely
artifacts of time symmetry. The shown MOTSs all form
after the outer AH has formed, and despite several having
larger area than Souter, are all contained within it.
Figure 2 makes clear that exotic MOTSs are essential to

understanding the final fate of the AHs of the individual
black holes. Both Sinner and S2 are independently annihi-
lated by new MOTSs. We have good indications that S1 is
annihilated by S�

1, but this could not be fully resolved in our

FIG. 2. The area of the various MOTSs as a function of time.
Lines of the same color indicate continuous world tubes moving
forward and backward in time. The pale gray dashed line
indicates the sum of areas of S1;2. For numerical reasons, we
lose track of some of the MOTSs—this is why some of the curves
abruptly terminate.

FIG. 3. A “snapshot” of Fig. 2 showing a variety of MOTSs.
The three dark lines correspond to Souter and S1;2. Two of the
shown surfaces exhibit self-intersections. Lighter colors indicate
a larger number of negative eigenvalues of the stability operator
(see below and our companion papers [21,32] for details). Note
that, in contrast to BL initial data, the absence of time symmetry
means that it is now possible for the new MOTS to penetrate the
inner AHs.
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simulation due to the MOTSs becoming too close to the
punctures, where the resolution is necessarily worse.
Nonetheless, it seems clear that our new MOTSs provide
a mechanism by which the AHs of the original black holes
are annihilated. To illustrate this in greater detail, we
present in Fig. 4 several snapshots of the evolution of S2.
The role of stability.—The stability operator is key in

understanding the details of the picture so far described. For
a nonspinning axisymmetric MOTS in vacuum, this takes
the form [21]

LΣΨ ¼ −ΔSΨþ
�
R
2
− 2jσþj2

�
Ψ; ð5Þ

where ΔS is the Laplacian on S, R is its scalar curvature,
and σABþ is the shear in the outward null direction.
Geometrically this operator arises when one considers
local deformations of a given MOTS, with the function
Ψ fully determining the deformation [33]. Intuitively,Ψ can
be thought of as measuring the normal distance between the
MOTS and its deformation.
Of particular interest is the eigenvalue spectrum

LΣΨ ¼ λl;mΨ, where the m ¼ 0 eigenvalues correspond
to axisymmetric deformations and in our nonspinning,
axisymmetric case, all eigenvalues are real. λl;m encodes
information about geometry of the MOTS. Especially
important is the principal (smallest) eigenvalue λ0;0 [33–
35]. If λ0;0 is positive, then the MOTS is called strictly
stable and evolves smoothly into the future. The world
tubes traced out by such MOTSs are everywhere expanding
and spacelike. Furthermore, these MOTSs act as barriers
between trapped and untrapped surfaces in their vicinity.
The vanishing of the principal eigenvalue has been iden-
tified with the bifurcation of Souter=Sinner [14,16,18].
We find these general considerations borne out in our

work, though with a number of important modifications
and caveats. First, of the potentially infinite number of
MOTSs present in the interior of the merger, only three are
strictly stable: Souter, S1, and S2. Only these surfaces act as
barriers and they are also the only ones to have everywhere

expanding spacelike world tubes. These properties are
precisely what one would associate with horizons.
Therefore stability provides an unambiguous criterion by
which the MOTSs corresponding to black hole boundaries
may be identified. This observation underlies our choice of
terminology for the AH advocated in this Letter: an AH is a
stable MOTS (λ0;0 ≥ 0, i.e., we include the marginal case).
All other MOTSs located have at least one negative
eigenvalue.
We find that, associated with every bifurcation and every

annihilation is the vanishing of an eigenvalue of the
stability operator—see Fig. 5 for the case of the bifurca-
tions. The formation and annihilation of the AHs coincide
with the vanishing of the principal eigenvalue, in line with
the results described above. However, a key finding of our
work is that, in the case that two MOTSs are unstable, it is
the vanishing of one of the higher m ¼ 0 eigenvalues that
coincides with their bifurcation or annihilation. A simple
picture emerges: the MOTSs foliating a given world tube

FIG. 4. The annihilation of S2. The inset shows, with a red dot, where along the world tube the shown MOTS occurs (see Fig. 2).

FIG. 5. Eigenvalues (with m ¼ 0) of the stability operator for
the ten MOTSs participating in the five bifurcations shown in
Fig. 2. For each MOTS, we show the respective eigenvalue that
tends to zero.
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accrue an additional negative m ¼ 0 eigenvalue with each
fold in time.
Finally, the properties of the spectrum provide further

evidence for the evolution we have advocated in this Letter.
At a given bifurcation or annihilation event, we find that the
numerical values of the eigenvalues of the surfaces involved
connect smoothly (see again Fig. 5). This provides robust
numerical evidence for the world tubes to be locally smooth
across the bifurcations and annihilations shown in Fig. 2.
Summary.—We have shown that the interior of a black

hole merger is far richer than previously thought, contain-
ing a large (possibly infinite) number of hitherto uniden-
tified MOTSs. These MOTSs were initially located using a
new shooting method that sidesteps the drawback in
existing finders of requiring an initial guess for the surface
of interest. The additional surfaces play a crucial role in the
interior dynamics of the merger and are responsible for the
annihilation of the AHs of the original black holes. As such,
with these new MOTSs, we reveal for the first time the full
story of how two black holes become one, giving the analog
of the pair of pants diagram for the AH. The picture is
considerably more complex than the equivalent picture for
the event horizon and involves several world tubes that
weave back and forth in time. The stability of MOTSs has
played a clarifying role in our work. Rather than obscuring
the utility of the quasilocal horizon framework, the multi-
tude of MOTSs present during the merger actually high-
lights the rarity of stable MOTSs. Of all the MOTSs we
have located, only three are stable, and these are precisely
those that are most naturally associated with black hole
boundaries. Moreover, we have found that associated with
each bifurcation and annihilation event is the vanishing of
some eigenvalue of the stability operator, not usually the
principal one. This observation may aid in the analytical
understanding of the world tubes traced out by unsta-
ble MOTSs.
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