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We report phase-programmable Gaussian boson sampling (GBS) which produces up to 113 photon
detection events out of a 144-mode photonic circuit. A new high-brightness and scalable quantum light
source is developed, exploring the idea of stimulated emission of squeezed photons, which has
simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the
input squeezed states. The obtained samples are efficiently validated by inferring from computationally
friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We
show that our GBS experiment passes a nonclassicality test based on inequality constraints, and we reveal
nontrivial genuine high-order correlations in the GBS samples, which are evidence of robustness against
possible classical simulation schemes. This photonic quantum computer, Jiuzhang 2.0, yields a Hilbert
space dimension up to ∼1043, and a sampling rate ∼1024 faster than using brute-force simulation on
classical supercomputers.
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The tantalizing promise of quantum computational
speed-up has been strongly supported by recent exper-
imental evidence from a high-fidelity 53-qubit super-
conducting processor [1] and Gaussian boson sampling
[2–4] (GBS) with up to 76 detected photons. Analogous
to the increasingly sophisticated Bell tests [5] that
continued to refute local hidden variable theories [6],
quantum computational advantage tests [7–9] are expected
to provide increasingly compelling experimental evidence
[1,2] against the extended Church-Turing thesis [10]. In
this direction, continued competition between upgraded
quantum hardware and improved classical simulations
[11–18] is expected and desirable.
Boson sampling, proposed by Aaronson and Arkhipov

[3], is a nonuniversal model of linear optical quantum
computation [19,20]. Realizing boson sampling with a
level of postclassical computational complexity requires
high-performance quantum light sources, a large-scale,
low-loss photonic circuit, and high-efficiency single-
photon detectors, all of which are essential building blocks
for universal quantum computation using photons. GBS

exploits squeezed vacuum states as input nonclassical light
sources, with the significant advantage of dramatically
increasing the output multiphoton click probability [4,21].
If the output outcomes are detected using photon-number-
resolving detectors, the probability amplitude of each
output outcome is proportional to the Hafnian of the
corresponding submatrix. This distribution is hard to
sample from under reasonable complexity conjectures
[4,22]. If threshold detectors are used to register the output
events, the related mathematical function is called
Torontinian [23], whose hardness is shown to be equivalent
to the Hafnian in the regime of dilute sampling [22–24].
In this work, we use threshold detectors. See the
Supplemental Material [25] for more discussions on its
computational hardness.
Experimentally, generating an increasingly large array of

squeezed states with, at the same time, near-unity photon
indistinguishability and collection efficiency, and suffi-
ciently high brightness, is still a nontrivial challenge
[2,35–37]. To increase the number of input squeezers or
their brightness, one typically uses stronger pump laser
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power, or, if the total power is fixed, narrows the focus
waist. However, the stronger pump power and tighter focus
could result in self-focusing and self-phase modulation that
lower both the photon purity and the collection efficiency.
Because of this problem, in the previous GBS experiment
[2], band-pass filters were used to increase the photon
indistinguishability to 0.938 at the cost of decreasing the
collection efficiency to 0.628.
In this work, we develop a stimulated squeezed light

source with high brightness, and simultaneously near-unity
purity and efficiency for scalable GBS. Moreover, by
exploiting an important feature of the GBS—the sampling
matrix absorbs both the action of the interferometer and the
phase and squeezing parameter of the input state—we
demonstrate and validate phase-programmable GBS with
113 detected photons, in a new photonic quantum computer
Jiuzhang 2.0.
Stimulated emission of squeezed photons.—Inspired by

the concept of light amplification by stimulated emission of
radiation (LASER), we design a new, scalable quantum
light source based on stimulated emission of squeezed
states. A schematic drawing is displayed in Fig. 1(a). The
idea is that spontaneously generated photon pairs, in
resonance with the pump laser, stimulate the parametric
emission of the second photon pair in a gain medium.
Previous experiments [26,38] have demonstrated this idea,
however, in the regime where the gain, collection efficiency
and photon indistinguishability were still low, which were
not suitable for optical quantum computing.

In our experiment, transform-limited laser pulses at a
wavelength of 775 nm are focused on periodically poled
potassium titanyl phosphate (PPKTP) crystals to generate
two-mode squeezed states (TMSS). We customize the
poling scheme of PPKTP crystals to eliminate the
unwanted frequency correlation [25]. After the PPKTP,
the pump laser and the collinear TMSS photons are
reflected back by a concave mirror, which are used as
seeds to stimulate the second parametric process.
Benefiting from the group velocity matching of the pump
laser and the parametric light, our setup is self-phase stable
and robust compared to the previous work [26,38].
By tuning a quartz wedge plate to change the relative

phase between the reflected pump laser and the TMSS, we
observe an interference fringe of the brightness of the
TMSS (Fig. S3 [25]). The interference visibility is 0.951,
showing the degree of mode matching of the seed and the
stimulated TMSS. At constructive interference, the stimu-
lated process increases the brightness of the source by a
factor of ∼3 compared to the previous single-pass scheme.
Equivalently, we can lower the pump power and use large
focus waist to generate TMSS with both higher indistin-
guishability and collection efficiency. In this work, at a
waist of 125 μm (65 μm), the measured collection effi-
ciency is 0.918 (0.864), and the photon purity is 0.961
(0.946) simultaneously, without any narrowband filtering
[see Figs. 1(b) and 1(c)]. We note that our double-pass
scheme can be straightforwardly extended to higher orders
and generate higher brightness, which can serve as a
scalable and near-optimal quantum light source.

0.90

0.92

0.94

0.96

0.98

1.00

0.85

0.87

0.89

0.91

0.93

0.95

Purities of 25 TMSSs Efficiencies of 25 TMSSs

(a)

(d)

(e)

(b) (c) 
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

50 SMSSs

U
144×144

14
4 

si
ng

le
-p

ho
to

n 
de

te
ct

or
s

ppKTPLens DM
Concave 
mirror

Silicon KTP

QWP
250 kHz
pulse

Phase
plate

Lens

775 nm

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

-0.04 -0.02 0.00 0.02
0

200

400

600

O
cc

ur
re

nc
e

fr
e q

ue
n c

y

Phase (rad)

FIG. 1. The key experimental parameters. (a) Squeezed light amplification by stimulated parametric down-conversion. Both the pump
and parametric photons are refocused by the concave mirror back to the PPKTP for stimulated emission. The down-converted photons
are polarization exchanged by the QWP and its relative phase with pump light are tuned by the wedge phase plate. The squeezed light
passed a KTP crystal for birefringence compensation and an antireflection coated silicon plate for filtering out residual pumping light,
before being collected into the single-mode fiber. (b) The purities of the 25 squeezed light sources with an average of 0.961. The purity is
defined as photon indistinguishability, that is, the overlap of the wave function of two independent photons. (c) The collection
efficiencies—defined as the ratio of generated photons collected in the single mode fiber—of the 25 squeezed light sources with an
average of 0.918. (d) An overview of the GBS setup. 25 pairs of two-mode squeezed photons are sent into a 144-mode interferometer,
and the output distribution is readout by 144 single-photon detectors. (e) Phase stability of the whole setup. The histogram shows that the
phase fluctuations are within 0.06 rad in an hour.
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144-mode phase-locked interferometer.—We generated
25 TMSS sources using the stimulated scheme (see Fig. S4
in Ref. [25] for their phase and squeezing parameters), and
send them into a 144-mode interferometer [see Fig. 1(d)
and Fig. S5 [25] for an illustration of the whole setup). The
compact three-dimensional interferometer [39] includes 2
polarization modes and 72 spatial modes. The interferom-
eter features a very high transmission rate of 96.5%. Taking
into account of the single-mode fiber coupling, the addi-
tional polarizing beam splitter, wave plates, and filters, the
overall efficiency is 78%. The relative path length differ-
ence between different ports is calibrated within a standard
deviation of 1.6 μm (Fig. S6 [25]), indicating that the wave
packet overlap inside the interferometer is better than
0.999. After the interferometer, the output photons are
detected by 144 superconducting nanowire single-photon
detectors with an average efficiency of 83% (Fig. S6 [25]).
In contrast to Fock-state boson sampling [3] where there

is no phase relation between single photons, GBS relies on
coherent superposition of the photon numbers. To this aim,
we develop active phase locking over the whole optical
path and passive stabilization inside the interferometer. The
phase fluctuation of the whole system is controlled within
0.06 rad for a duration of 1 h, as shown in Fig. 1(e). Such a
phase instability will cause a ∼0.5% decrease of the photon
interference visibility [25].
Validating GBS.—We perform GBS at different laser

pump power (from 0.15 to 1.6 W) and focal waists (65 and
125 μm), which gives rise to different photon number

distributions. Four examples are shown in Fig. 2(a), where
the maximal output click number ranges from 32 to 113.
To validate the obtained samples, we provide evidence

for the correct operation of the GBS, and rule out mockups
using possible spoofing methods [40–42]. The most plau-
sible hypotheses in this experiment include using coherent
light sources (lasers) as input, distinguishable photons
(owing to mode mismatch and imperfect light sources),
thermal states (due to photon loss), and uniform random
outcome.
First, we compare the distribution of total output clicks

for GBS with the possible mockups. Figure 2(b) shows that
the experimental GBS data perfectly overlaps with the
theoretical prediction [43], while strongly deviates—in
both their line shapes and peak positions—from the
classical mockups based on distinguishable photons and
thermal states.
Having studied the global properties of ensemble dis-

tributions, we proceed to validate the individual samples.
The validation protocols, such as Bayesian test [41],
likelihood test [42], and heavy output generation [2],
require the calculation of the probability of each sample,
which is given by a Torontonian [23]. The best currently
known algorithms have exponential time complexity and
can reasonably be used to calculate the submatrix
Torontonian for at most 40 photons. However, our experi-
ment involves a much larger number of photon clicks,
reaching a maximal of 113. To tame the validation in the
intractable regime, we propose a computationally friendly

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Validation of GBS. (a) Photon clicks distribution at different pump power and focal waists. (b) Output photon-click
distribution of the experiment (red), theoretical prediction (orange), thermal state (blue), and distinguishable photons (purple). The
experimental GBS data perfectly overlap with the theoretical curve, while strongly deviates from the other three mockups. (c) Bayesian
test against the hypothesis of distinguishable photons with subsystem mode number ranging from 100 to 144. For clarity, we added an
artificial offset to the Bayesian counter in order to make the different dataset clearly visible. (d) The calculated Bayesian confidence ΔH
as a function of the subsystem mode number. For all the hypotheses, it is clear that the validation confidence is stronger for a larger mode
number. (e)–(h) The experimental results of Bayesian confidence ΔH at different laser pump power and focal waists for the validations
against the uniform samplers (e), coherent state (f), distinguishable photons (g), and thermal state (h). The color coding is the same as
panel (a). Error bars represent 1 standard deviation of uncertainty. From (e) to (h), the Y axis scale is different for different mockups. The
validation appears to be easier for uniform sampler (e) and harder for thermal state sampler (h).
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method. The idea is that, we start from a subsystem with
fewer output bosonic modes, which is computationally
easier to study Intuitively, the validation will become
stronger if there are fewer modes traced out. Therefore,
if one can rule out mockups even in the subsystem and
observe an increasing trend when the mode number
increase, then the confidence on the whole system will
be stronger, although this cannot be computed directly.
In the standard Bayesian test [41], for each measured

sample k, we use Qk and Rk to denote the probability
associated with the ideal GBS and a mockup sampler. We
define the Bayesian counter CB as

CB ≔ χN=ðχN þ 1Þ; where χN ¼
YN

k¼1

Qk

Rk
: ð1Þ

χN > 1 indicates that the experimental samples are more
likely from the GBS than the mockup. CB is the probability
that the samples are drawn from the GBS after test-
ing N events. We further define Bayesian confidence:
ΔH ≔ log χN=N, to measure the strength of the validation
for unit samples [25]. The value of ΔH when N → ∞ is the
difference between the cross entropy of the ideal and
mockup distributions relative to the experimental distribu-
tion. A larger value of ΔH indicates a larger deviation
between the GBS and the mockups.
Figure 2(c) shows a typical example of the Bayesian test

for subsystem size from 100 to 144, which is used for the
validation of the sample against mockups using distin-
guishable photons. The Bayesian counter CB grows rapidly
and reaches over 99.6% after 50–100 events. The Bayesian
tests against other hypotheses are plotted in Fig. S11 of the
Supplemental Material [25].
We divide the results into two regimes: classically

simulatable and intractable. The low pumping intensity
regime with less than 40 maximal photon clicks is within
the computational capability of classical supercomputers.
Thus, we can validate the data over the full range of photon
clicks and size. Figure 2(d) shows the calculated Bayesian
confidence ΔH as a function of the subsystem size from 50
to 144, which, for all the hypotheses, clearly shows an
increasing validation confidence for larger mode number.
Next, we move to the computationally intractable regime

under high pumping intensity. We employ a method similar
to Ref. [44] to study the properties of the whole system
based on subsystems. The Bayesian confidence ΔH are
calculated and plotted with varying mode size for the
validations against the uniform samplers [Fig. 2(e)], coher-
ent state [Fig. 2(f)], distinguishable photons [Fig. 2(g)] and
thermal states [Fig. 2(h)]. At the high laser intensity regime,
the classical supercomputer can only handle the data at the
subspaces with 20–80 output bosonic modes. For all the
tested data, we observe that not only ΔH > 0, but also it
follows the same increasing trend as in the low intensity
regime. This allows us to infer that the same setup with all
modes in the quantum advantage regimewould be validated
with an even stronger confidence.

Limits on classical simulability of GBS.—GBS is sus-
ceptible to experimental imperfections which might
degrade the quality of the photon interference to the point
that the experiment becomes classically simulable [45–47],
in the sense that a classical efficient strategy exists to
produce samples which cannot be distinguished to within
some chosen accuracy from those coming from the quan-
tum sampler. The main sources of noise in GBS are photon
loss, photon distinguishability, noise on the interferometer,
and detector dark counts.
For GBS, two main strategies for classical simulation

recently emerged. The first uses the non-negativity of
quasiprobability distributions (QPD) (generalizations of
the Wigner function) as a strategy for simulation [45].
The second uses the fact that in GBS, the marginal
distributions of photon numbers (i.e., the probabilities to
observe some subset of detection events irrespective of the
others) are informative about the complete probability
distribution [16,27,47,48].
For the QPD based simulations, an inequality exists that

demarcates the regime of simulability [45]. Thus, any
finite-sized experiment must violate this inequality to show
that it is not simulable by this strategy. The inequality is
given by [45]

sech

�
1

2
Θ
�
ln

�
1 − 2qD

ηe−2r þ 1 − η

���
> e−ϵ

2=4K; ð2Þ

where r is the squeezing parameters, η is the overall system
efficiency from the nonlinear crystals to the detectors, K is
the number of squeezed sources, ϵ is the total variance
distance of the experimental GBS samples compared to the
ideal cases, Θ is the ramp function ΘðxÞ ≔ maxðx; 0Þ, and
qD ¼ pD=ηD is calculated from the photon detector effi-
ciency (ηD) and dark count rate (pD). Summarizing the
efficiencies at the quantum light sources, interferometer,
and detectors, the overall transmission rate in our experi-
ment is 48% and 54% at the focal waists of 65 and 125 μm,
respectively. As we plot in Fig. 3(a), this inequality is
violated for any ϵ for all the chosen parameters, which
makes our experiment pass the nonclassicality test.
The second family of simulation strategies [16,27,47,48]

relies on low-order information of the probabilities to
estimate the true distribution, such as using the truncation
of Fourier transformation of the interfering probability
amplitudes, and the low-order marginal distributions of
photons which can be computed efficiently. The physical
picture in the GBS is that interference processes of n
photons manifests themselves in the nth-order marginal
distributions. The computational cost of computing a kth
order marginal probability is the same as computing the
probability of a k-photon boson sampler, i.e., 2k, up to a
polynomial factor. Since the marginals provide some
information about the distribution, it may be possible to
construct mockup distributions which resemble the true
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quantum distribution. For Fock-state [3] and superposition-
state boson sampling [47], it is known how to do this
efficiently. For GBS, a straightforward extension of this
scheme has so far failed [47] (see Ref. [49] for further
analysis).
Since there is no concrete marginal-based simulation

strategy based on GBS, there is no clear equation to validate
against. To argue the degree to which our results are
robust against simulation schemes based on marginal
distributions, we investigate the truncated high-order cor-
relations present in our dataset. The truncated k-order
correlation quantifies the degree to which the correspond-
ing k-body marginal cannot be explained by the marginal
output distribution of 1-body to (k − 1)-body coincidence.
Truncated k-order correlation can be recursively defined as
[50–52]

κðX1X2…XkÞ ¼EðX1X2…XkÞ−
X

p∈Pk

Y

b∈p
κ½ðXiÞi∈b�; ð3Þ

where Pk represents all the partitions of f1; 2;…; kg,
except the universal set. Examples of the experimental

and theoretical truncated 1-order to 4-order correlations are
plotted in Figs. 3(b)–3(e). It is evident that the experimental
results are highly consistent with the theoretical results,
indicating the presence of nontrivial genuine high-order
correlation in the GBS data.
To quantitatively extract the high-order correlations from

the statistical noise, we use Spearman’s rank-order test,
which is a statistical method to quantify the correlation
between the experimental data and theoretical prediction.
We extrapolated the p value of Spearman’s rank-order
test [Fig. 3(f)], and estimated that there are up to (19� 1)
order correlations for p < 0.05 already in the data collec-
ted within 200 s [53]. We estimate that a 100-h data
collection—which is feasible in our setup—can further
reveal up to (43� 7) order correlations.
Finally, we comment on whether this level of higher-

order correlations is sufficient to protect against classical
simulation. If a scheme exists that uses the kth order
marginals in an efficient way (e.g., by only computing
those marginals associated with a given configuration of
outcomes), such a scheme will be able to efficiently
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FIG. 3. Truncated correlation functions of the GBS machine. (a) Nonclassicality test of experiment as proposed in Ref. [45]. The
colored areas correspond to the classically simulable regimes, while our experiment results (red dots) are well above color area. Here, the
classically simulable means that the experimentally generated state and the measurement operator can be written as t-ordered phase-
space quasi-probability distributions without negative probabilities and therefore the experiment can be simulate efficiently [45]. (b)–(e)
are the truncated first- to fourth-order correlation functions of calculated theoretical values (y axis) and extracted experimental results (x
axis), respectively. The results clearly indicate that our data have genuine correlations. (f) Extracted p values of Spearman’s rank-order
tests. The vertical axis is − lnðpÞ=L, where L is the number of k-order correlations. The red dots are from our experimental dataset
within 200 s, which drops exponentially when the correlation order linearly increases. By fitting, we extrapolate that there is up to
correlations of 19� 1 order in our experiment for p < 0.05. The blue dots are from a hypothetic dataset within 100 h. Using the same
method, we estimate that correlations of 43� 7 order can be determined.
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simulate our system. For a scheme that requires a full
enumeration of all marginals [48], and then an inversion of
the full marginals’ problem, there is an additional efficiency
overhead, since there are combinatorially many such
marginals. We estimate that the algorithm that uses low-
order correlation to reconstruct samples is not feasible with
up to ∼10th order correlation. Since our experimental data
contains nontrivial correlations up to ∼19th order, we
expect our results to be robust against such a simulation
scheme [25,47,49].
We hope that our work will inspire new efforts for

quantitative characterizations for the GBS and new clas-
sically efficient spoofing methods [27,45–47] to challenge
the GBS device. All raw data have been archived online to
encourage the development and testing [54].
Phase-programmable GBS.—The transformation matrix

in the GBS is determined by both the interferometer and the
squeezing parameters and phases of the input TMSS. While
the interferometer is fixed in this work, by changing the
phase of the input squeezed states, the underlying matrix
can be reconfigured and the GBS machine can be pro-
grammed to solve different parameters. Here, we demon-
strate the programmability of the GBS quantum computer
by setting 30 different groups of random phases of the input
TMSS, as shown in Fig. 4(a). To change the phases, we add
adjustable electric delay lines to the reference signal to
which each TMSS is phase locked.
To extract distinguishable statistical properties of the 30

groups of samples, we use two-point correlation function
[50], which is defined as Ci;j ¼ hΠi

1Π
j
1i − hΠi

1ihΠj
1i, where

hΠi
1i ¼ I − j0iih0ji represent the expected number of

clicks in mode i. The two-point correlation method is
suitable for characterization as it can eliminate the influ-
ence of unbalanced amplitudes between different modes,
and allows us to extract the photon interference terms only
and it is efficient to compute classically.

There are 144 × 143=2 ¼ 10296 combinations of Ci;j
for each phase setting. To quantify the distance between the
30 groups, we calculate the total variance distances of
the Ci;j between any two groups, and plot the results in
Fig. 4(b). The diagonal elements—the settings with the
same phase—have an average of 0.068(1), which is the
noise level of statistical fluctuations due to finite samples.
However, the other elements have an average of 0.32(1),
which is significantly larger than the statistical fluctuation,
thus successfully distinguishing the data of the 30 different
groups.
We further investigate the statistical properties of the

two-point correlation functions of the experimental sam-
ples, their theoretical predictions, and two mockups with
thermal state and distinguishable photons. As shown in
Fig. 4(c), the horizontal axis represents the norma-
lized mean in the form of hCiM2=N, and the vertical
axis represents the coefficient of variation written asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC2i − hCi2

p
=hCi, where C represent the two-point

correlation functions, and M, N represent the number of
output and input modes, respectively. Each point is from
one setting of the TMSS phase. The results are close to the
theoretical calculation and clearly far away from the two
mockups. Note that the statistical properties of the GBS
samples vary with different phases thus have scattered
plots, while those of the mockups with thermal state and
distinguishable photons are not affected by the phase thus
have only one data point.
The classical computational cost.—Quantum computing

experiments are rapidly moving into new realms of
increasing size and complexity. One characteristic is output
Hilbert space dimension. Figure 5(a) plots the computa-
tional state-space dimension of the boson sampling
[2,35,37,39,42,44,55–65] and random circuit sampling
experiments, where the current work reaches a new record
to ∼1043.
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FIG. 4. The programmability of the GBS machine. (a) 30 different groups of phase settings of all 25 TMSSs. All phase curves are
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TMSS phases. (c) Normalized mean and coefficient of variation of the distributions of two-point correlation functions, including
experimental samples (red square), theoretical predictions (blue dot), thermal state (black triangle) mockup and distinguishable photons
(purple triangle) mockup. Each point is from one setting of the TMSS phases.

PHYSICAL REVIEW LETTERS 127, 180502 (2021)

180502-6



Finally, we estimate the classical computational cost to
simulate the GBS. We choose the benchmarking algorithm
[23] by calculating Torontonian on the Sunway TaihuLight
supercomputer [66]. For each output multiphoton sample,
we calculate the corresponding time cost used by the
supercomputer to obtain one sample by calculating the
submatrix Torontonians, which is plotted in Fig. S14 [25]
for different pumping intensity. The overall classical time
cost is then compared to the sample collection time (200 s)
using the GBS quantum computer, which we call quantum
advantage ratio here. The advantage ratio is summarized in
Fig. 5(b) as a function of the maximally detected photon
clicks in the quantum experiments. We observe a transition
from no quantum advantage (the ratio is 10−3–100, light
green area), modest speedup (the ratio is 100–1010, light
yellow area), to overwhelming speedup (the ratio is
1010–1024, light red area).
We emphasize again that this estimation is based

on the direct simulation algorithm [23]. With the ongo-
ing development of more efficient classical algorithms
[12,14,16,27] and possibly by exploiting the photon loss
and partial distinguishability [45–47], we expect and
encourage classical algorithmic improvements to narrow

the quantum-classical gap. Meanwhile, inspired by the
classical algorithmic improvements and possible spoofing
methods, the GBS quantum computer will also continue to
be upgraded to compete with the classical simulation. For
example, the stimulated squeezed light sources developed
here can be straightforwardly scaled to higher orders and
larger photon numbers, with near-unity efficiency and
indistinguishability simultaneously.
Outlook.—The GBS links to several potentially appli-

cations such as quantum chemistry [67–69], graph opti-
mization [70–72], and quantum machine learning [73,74].
By adjusting only the squeezing parameters and phases,
the current setup can already be used for quantum
machine learning [73]. A natural next step would be to
use the GBS quantum computer developed here as a
special-purpose photonic platform to investigate whether
these algorithms can provide any quantum speedup [75].
Finally, the quantum optical setup consisting of squeezed
states fed into a linear optical network and followed by
photon detection can be used for the creation of a different
family of entangled states [76]. One interesting applica-
tion is to demonstrate the Gottesman-Kitaev-Preskill
code [77], which is useful for fault-tolerant quantum
computation [78].
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Note added in the proof.—A related experiment demon-
strating quantum computational advantage with 56 super-
conducting qubits is reported in [79].
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