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The time-symmetric formalism endows the weak measurement and its outcome, the weak value, with
many unique features. In particular, it allows a direct tomography of quantum states without resorting to
complicated reconstruction algorithms and provides an operational meaning to wave functions and density
matrices. Here, we propose and experimentally demonstrate the direct tomography of a measurement
apparatus by taking the backward direction of weak measurement formalism. Our protocol works
rigorously with the arbitrary measurement strength, which offers improved accuracy and precision. The
precision can be further improved by taking into account the completeness condition of the measurement
operators, which also ensures the feasibility of our protocol for the characterization of the arbitrary
quantum measurement. Our work provides new insight on the symmetry between quantum states and
measurements, as well as an efficient method to characterize a measurement apparatus.
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Introduction.—A time-symmetric description of a physi-
cal system involving both the initial and final boundary
conditions allows not only the prediction but also the
retrodiction of its evolution, and therefore may reveal more
information about the system. Such description for quan-
tum systems can be captured by the two-state vector
formalism (TSVF) [1,2]. The preselected state describing
the preparation of the system evolves forward in time, while
the postselected state determined by the measurement on
the system evolves backward. The TSVF provides a new
approach to interpret many intriguing quantum effects
[3–9]. In particular, adding retrodiction to the standard
predictive approach allows an improved description of the
evolution trajectories of quantum systems [10–13].
One of the most remarkable phenomena from TSVF is

the weak measurement and its associated outcome, the
weak value [14], which are widely used in precision
metrology [15–19] and investigations of various phenom-
ena [20–24]. In particular, the complex weak value can be
the complex probability amplitude of the wave function,
therefore allowing a direct tomography of quantum states
and processes [25–39]. Compared with the conventional
tomography scheme that reconstructs a quantum state with
an overcomplete set of measurements followed by the
complex postprocessing of data [40–42], the direct tomog-
raphy avoids the reconstruction algorithm and shows
distinct advantages in both directness and simplicity.
Therefore, the direct tomography promises to be especially
useful in the characterization of high-dimensional states
[29,39].

Until now direct tomography has only taken the forward
direction of the weak measurement to characterize the
preselected state and its evolution. The time-symmetric
formulation has not been fully explored. Since the pre- and
postselected states enter the formulation on equal footing, it
is expected that the backward direction allows one to
directly determine the postselected state, which can be
viewed as the retrodicted state of the measurement per-
formed on the quantum system [43]. This connection
implies the feasibility of direct tomography of a quantum
measurement [44].
In this Letter, we propose the general framework for the

direct quantum detector tomography (DQDT) protocol. A
direct connection between the numerator of the weak value
and either the eigenvector of the rank-1 positive operator-
valued measure (POVM) or the Dirac distribution of the
higher-rank POVM is rigorously established with the
arbitrary measurement strength. Such a connection allows
one to not only directly determine the POVM element of
interest but also improve the accuracy and precision by
adjusting the measurement strength. As a demonstration,
we experimentally characterize both projective measure-
ments and general POVMs in the polarization degree of
freedom (d.o.f.) of photons. Moreover, we show the
feasibility of our protocol for the characterization of the
arbitrary POVM thanks to the completeness condition of
the POVM.
Theoretical framework of DQDT.—The original direct

tomography protocol is applied to determining a pure
quantum state jsi which is expanded in an orthogonal
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basis fjjigðJ Þ with the probability amplitudes fαjg. To
directly obtain αj ¼ hjjsi, the unknown state jsi is weakly
measured with the projector π̂j ¼ jjihjj of the orthogonal
base state jji followed by the postselection to jψni ∝

P
j jji.

The outcome of this measurement is the weak value of π̂j,

given by hπ̂wj iðnÞs ¼ hψnjπ̂jjsi=hψnjsi ∝ αj. Thus, by meas-

uring hπ̂wj iðnÞs that scans in the basis J , fαjg can be
completely determined with the normalization of the state.
The direct tomography protocol is also extended to mixed
states by exploiting the connection between the weak value
and the Dirac distribution or the density matrix [25–27].
As the formulation of weak value is symmetric for both

pre- and postselected states (i.e., jsi and jψni), the post-
selected state jψni can also be directly measured by
properly preparing the preselected state jsi. The postse-
lection to jψni is typically implemented with a projec-
tive measurement Π̂n ¼ jψnihψnj. Therefore, this direct
method is expected to be able to characterize a quantum
measurement.
We first concentrate on characterizing one element of a

rank-1 POVM Π̂n ¼ ηnjψnihψnj, in which jψni can be
considered as the retrodicted state and ηn is the equivalent
detection efficiency [43,45–47]. The preselected state of the
quantum system (QS) is prepared to ρs ¼ jsihsj with
jsi ∝ P

j jji. We implement the Von Neumann measure-
ment of ρs by coupling the QS to ameter state (MS) ρm under
the Hamiltonian Ĥ ¼ gδðt − t0Þπ̂jM̂ giving the joint state
ρjt ¼ exp½−i R Ĥdt�ρs ⊗ ρm exp½i R Ĥdt�, where g is the
coupling strength and M̂ is the observable of the MS.
Finally, the unknown measurement operator Π̂n performs
the postselection on the QS. The generalized weak value
formulated as

hπ̂wj iðnÞs ¼ TrðΠ̂nπ̂jρsÞ
TrðΠ̂nρsÞ

ð1Þ

can be extracted from the measurement of the MS that
survives the postselection. To simplify the process in
determining Π̂n, we define an unnormalized state jφni ¼ffiffiffiffiffi
ηn

p jψni, thus Π̂n ¼ jφnihφnj. Instead of successively deter-
mining ηn and jψni, we directly measure jφni to obtain Π̂n.
Since there is no normalization condition in jφni, measuring

the numerator of weak value, i.e., ωðnÞ
j;s ¼ TrðΠ̂nπ̂jρsÞ, is

sufficient for characterizing Π̂n. In this way, we have

ωðnÞ
j;s ¼ hsjφnihφnjjihjjsi ¼ tðnÞs hφnjji=

ffiffiffi
d

p
, where tðnÞs ¼

hsjφni, and d ¼ 1=jhjjsij2 is the dimension of the QS.

Since tðnÞs is a constant for different j, we take tðnÞs as a real

value that can be derived by tðnÞs ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihsjφnihφnjsi
p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðPj ω
ðnÞ
j;s Þ

q
(taking the real part for practical data

processing). Consequently, each expanding coefficient of
jφni in the base state jji is given by

hjjφni ¼
ffiffiffi
d

p
ωðnÞ�
j;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ReðPjω
ðnÞ
j;s Þ

q : ð2Þ

In the general situation to directly characterize higher-rank

POVM element Π̂n, ω
ðnÞ
j;s naturally equals to the “right”

phase-space Dirac distribution of Π̂n in the d-dimensional
discrete Hilbert space by scanning both the projectors π̂j
in the basis J and the preselected state jsi ¼
1=

ffiffiffi
d

p P
d−1
j¼0 e

2πijs=djji in the Fourier basis S [48].
For a qubit MS initialized as ρm ¼ j0ih0j and the

observable M̂ ¼ σ̂y, both the real and imaginary parts of

ωðnÞ
j;s can be obtained from the joint measurement of the QS

with the postselection operator Π̂n and the MS with the
observables Ŝ1 ¼ σ̂x þ tanðg=2Þð1̂ − σ̂zÞ and Ŝ2 ¼ σ̂y, for-
mulated as [46]

ωðnÞ
j;s ¼ 1

2 sinðgÞTr½ρjtΠ̂n ⊗ ðŜ1 þ iŜ2Þ�: ð3Þ

The feasibility of a tomography technique is typically
evaluated by the metrics of both accuracy and precision. In
the original direct state tomography, the accurate weak
value can only be obtained with a small coupling strength
due to the first-order approximation, which sacrifices
precision. In view of effective efforts made in the state
tomography [31,49,50], the DQDT protocol is valid for the
arbitrary nonzero g allowing us to improve the precision of
the tomography without loss of accuracy. Besides, the
potential inefficacy of direct state tomography is caused by
the orthogonality of the pre- and postselected states [51–
53]. In the following, we show this efficacy issue can be
overcome in the DQDT by the appropriate use of the
completeness condition of the POVM.
The precision of the measured POVM fΠ̂ng is quantified

by summing the variance δ2ð·Þ of each POVM element
Δ2 ¼ P

n δ
2ðΠ̂nÞ, where δ2ðΠ̂nÞ ¼

P
j;j0 δ

2ðhjjΠ̂njj0iÞwith
jji and jj0i the base states in basis J . Since each POVM
element Π̂n is independently determined in the DQDT, the
precision δ2ðΠ̂nÞ can be improved when the completeness
condition of POVM, i.e.,

P
n Π̂n ¼ 1̂, is applied. To acquire

the optimal precision based on the completeness condition,
the normalized matrix entries of the POVM element Π̂n can
be obtained by a weighted average of the directly measured
results and those inferred from other POVM elements. The
optimal weighting factors should be proportional to their
metrological contributions quantified by the inverse of their
variances [46]. As an example, we let Ek ¼ ReðhjjΠ̂kjj0iÞ
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and Ik ¼ 1=δ2ðEkÞ. The normalized E0
k according to the

completeness of POVM is given by

E0
k ¼

Ik
Ik þ I∘k

Ek þ
I∘k

Ik þ I∘k

�
δj;j0 −

XM
m≠k

Em

�
; ð4Þ

where I∘k ¼ 1=½PM
m≠k δ

2ðEmÞ� and δj;j0 denotes the
Kronecker delta function. For the general POVM element,
the positive condition (Π̂n ≥ 0) is also useful to improve the
precision [46].
Experiment.—The experimental setup is shown in Fig. 1.

By referring to the polarization d.o.f. of photons as the QS,
we prepare the preselected state through a polarizer and a
half wave plate (HWP). Then, the preselected photons input
a polarizing beam displacer (PBD), which converts the
polarization-encoded QS to path-encoded. The polarization
of photons in the two paths is employed as the MS. We use
the computational basis fj0i; j1ig referring to the jHi and
jVi for polarization qubit or the upper and lower path for
the path qubit. A HWP at 45° placed in path “1” initializes
the MS to j0im. The coupling Hamiltonian Ĥ ¼ gδðt −
t0Þπ̂jσ̂y is realized by rotating g=2 degrees the HWP placed
in the jth path. Since the postselection on the QS and the
measurement of the MS are physically commutable, we
first perform the projective measurement on the MS with
the following combination of a quarter-wave plate (QWP),
a HWP, and a polarizer [54]. Afterward, the transmitted
photons are recombined with the subsequent HWP at 45°

FIG. 1. Experimental setup. (a) The pulsed laser at 830 nm first
gets through a β-barium borate crystal (BBO) for the second
harmonic generation and then inputs the potassium di-hydrogen
phosphate (KDP) crystal for spontaneous parametric down-
conversion (SPDC). Two photons are simultaneously generated
in SPDC, one of which is used for heralding, and the other is
collected to input the “direct tomography” module for the
characterization of the unknown quantum measurement labeled
“Measurement (I, II).” The modules “Measurement I” and
“Measurement II” illustrate the experimental implementation
of projective measurements and symmetric informationally com-
plete positive-operator-valued measure (SIC POVM) in the
polarization degree of freedom, respectively.

n=1 n=2 n=3 n=4
(b)(a)

(e)

error distribution

(c)
Th Exp

(d)

FIG. 2. The experimental results for the characterization of “Measurement I.” (a) We plot the experimentally (points) estimated and
theoretical (circles) ωðnÞ

j;s and ω
ðnÞ;⊥
j;s by denoting the real and the imaginary parts of ω as the horizontal and the vertical axes, respectively.

(b) In the Bloch sphere representation, the solid (dashed) arrows refer to the theoretical retrodicted states jξni (jξ⊥n i), and the points
(cubes) represent the experimental retrodicted states jψni (jψ⊥

n i). The red, green, blue, and yellow colors refer to n ¼ 1, 2, 3, 4,
respectively. (c) The schematic error distributions of the measured jψ3i and jψ⊥

3 i before (pink shaded area) and after (green shaded area)
the normalization are shown in the cross section of the Bloch sphere. (d) The precision of the experimentally measured POVM (points)
obtained from the Monte Carlo simulation with different g is compared with the theoretical results (lines). The δ2ðΠ̂nÞ and δ2ðΠ̂⊥

n Þ
denote the variances of the POVM elements before the normalization. The variance δ2ðΠ̂0

nÞ for both the POVM elements (Π̂n and Π̂⊥
n )

after the normalization is the same. (e) The fidelities (F ¼ jhψ jϕij2 for jψi and jϕi) between the experimental retrodicted states jψni
(jψ⊥

n i) and the theoretical states jξni (jξ⊥n i) for n ¼ 1, 2, 3, 4 are given in the table.
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compensating for the changes of the polarization during the
coupling process. Finally, the quantum measurement,
which is to be characterized, implements the postselection
on the QS.
“Measurement I,” composed of a QWP, a HWP, and a

PBD, performs the projective measurement on the polari-
zation of photons. We implement four configurations of
projective measurements fjξnihξnj; jξ⊥n ihξ⊥n jg (n ¼ 1, 2, 3,
4), inwhich the retrodicted states are parameterized as jξni ¼
anjHi þ bneiϕn jVi and jξ⊥n i ¼ bnjHi − aneiϕn jVi with the
parameters 2a1 ¼ 2a2 ¼ 2a3 ¼ b1 ¼ b2 ¼ b3 ¼ 2=

ffiffiffi
3

p
,

ϕ1 ¼ π=3, ϕ2 ¼ −π=3, ϕ3 ¼ ϕ4 ¼ 0, a4 ¼ 1, b4 ¼ 0.
Since the retrodicted states are pure, we fix the preselected
state to jsi ¼ jDi ¼ 1=

ffiffiffi
2

p ðjHi þ jViÞ. The coupling
strength g is varied from −42° to 42° with the step of 6°.
Based on Eq. (3), the measurement results of the

observable Ŝ1 and Ŝ2 for different g are fitted to obtain

an estimated ωðnÞ
j;s shown in Fig. 2(a) [46]. The correspond-

ing retrodicted states of the four projective measurements
are compared with the theoretical results in Fig. 2(b). The
fidelities between the experimental (jψni and jψ⊥

n i) and the

theoretical (jξni and jξ⊥n i) retrodicted states are given in
Table (e) of Fig. 2. Figure 2(c) schematically illustrates the
error distribution of the projective measurements jξ3ihξ3j
and jξ⊥3 ihξ⊥3 j both before and after the normalization of the
POVM. Since jhDjξ3ij2 is close to 0, the precision of
determining jξ3i is originally much worse than that of jξ⊥3 i,
which is significantly improved after the normalization.
The detailed results of precision for different g are shown in
Fig. 2(d). As we can see, the weighted average in Eq. (4)
ensures that the precision of the normalized projector is
better than that of either one in the arbitrary two-output
projective measurement.
“Measurement II” in Fig. 1 illustrates the realization of

the symmetric informationally complete (SIC) POVM on
the polarization d.o.f. of photons through quantum walk
[55,56]. Ideally, the POVM elements of the four outputs
from the bottom to the top are respectively Π̂n ¼ ηnjξnihξnj
for n from 1 to 4 with all the equivalent detection efficiency
ηn ¼ 0.5. Since all the retrodicted states are pure, we first
adopt the same DQDT procedure as the projective meas-

urement. The experimental ωðnÞ
j;s estimated from the results

g = -0.105 g = 0.733

Ideal Est Exp
Primary

Normalized

n=1 n=2 n=3 n=4

(a)

n=1
n=2
n=3
n=4

Ideal Est Exp

g = -0.105 g = 0.733

(b)

(c)

(d) (e)

FIG. 3. The experimental results for the characterization of “Measurement II.” (a) By regarding “Measurement II” as a rank-1 POVM,
we illustrate the experimentally (solid markers) estimated and theoretical (hollow markers) ωðnÞ

j;s . (b) The experimentally derived pure
retrodicted states (points) are compared with those of the ideal SIC POVM (arrows) in the Bloch sphere with fidelities 0.9781 (red),
0.9912 (green), 0.9882 (blue), 0.9984 (yellow) for n ¼ 1, 2, 3, 4, respectively. (c) The experimentally estimated (the cylinders) Dirac
distributions of “Measurement II” are compared with those inferred from the results of conventional tomography (solid edges). The
fidelities (F ¼ ½Trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1
p

ρ2
ffiffiffiffiffi
ρ1

pp Þ�2 for ρ1 and ρ2) between the retrodicted states of the directly measured POVM with those of CT are
0.9994, 0.9994, 0.9999, 0.9997 for n ¼ 1, 2, 3, 4, respectively. The precision of the obtained POVM is illustrated in (d) (rank-1
situation) and (e) (rank-2 situation). In (d), we compare the precision of the experimentally measured POVM (points and triangles)
obtained from the Monte Carlo simulation with the calculated precision of the ideal SIC POVM (dashed lines) and the estimated POVM
(lines). In (e), the calculated precision inferred from the results of the CT (lines) and the ideal SIC POVM (dashed lines) coincide with
each other. In both (d) and (e),Δ2 in lgðΔ2Þ of the y axis represents the total variance of the POVM. The two insets show the precision of
each POVM element for g ¼ −0.105 and g ¼ 0.733, respectively. Here, we denote the precision of the directly measured results as
“Primary” (blue) and that of the normalized results as “Normalized” (red).
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of different g and the derived retrodicted states are shown in
Figs. 3(a) and 3(b), respectively. The precision of the SIC
POVM both before and after the normalization for different
g is illustrated in Fig. 3(d).
Because of the imperfect optical interference caused by

the spatial misalignment and air turbulence, the retrodicted
states of the realistic Π̂n may be mixed states. Therefore, the
above results acquired by regarding “Measurement II” as a
rank-1 POVM may deviate from the actual situation. To
remove this error, we also prepare the preselected state
jAi ¼ 1=

ffiffiffi
2

p ðjHi − jViÞ to acquire the full Dirac distribu-

tion of all the POVM elements ωðnÞ
j;s (j ¼ H, V and s ¼ D,

A) with different g, respectively. As a comparison, we
reconstruct the POVM of “Measurement II” by the conven-
tional tomography (CT) [46]. The directly measured Dirac
distributions that are estimated from the results of different
g are compared with those derived from the results of
CT, shown in Fig. 3(c). The precision of the DQDT in
characterizing “Measurement II” before and after the
normalization is compared in Fig. 3(e).
Discussion and conclusions.—By analyzing the precision

of the DQDT protocol shown in Figs. 2(d), 3(d), and 3(e), we
find that the statistical errors dramatically increase when the
coupling strength g approaches 0. Therefore, one should
avoid the DQDT working with a small g. In the characteri-
zation of rank-1 POVMs, the precision gets worse when the
retrodicted state of the rank-1 POVM element approaches
being orthogonal to the preselected state, which can be
overcome with the use of the completeness condition of the
POVM. Though a single preselected state is sufficient to
determine a rank-1 POVM, deviation may occur when the
realistic imperfections render the POVMelementwith higher
rank. Thus, measuring the Dirac distribution of the POVM
provides the complementary verification and the improve-
ment of the accuracy to the preceding characterization of the
rank-1 POVM.
In conclusion, we propose a direct tomography scheme

to characterize unknown quantum measurements by asso-
ciating the POVMs with the numerators of the weak values.
An appropriate choice of the coupling strength as well as
the completeness condition of the POVM allows us to gain
a precise characterization of the arbitrary POVMs. In the
experiment, the direct tomography scheme is applied to
characterize both the projective measurements and the
general POVM. The DQDT results coincide well with
the theoretical predictions and the results of CT, while
showing the algorithmic and operational simplification in
characterizing complicated measurement apparatus. Our
scheme Extends the direct tomography from quantum
states, quantum processes to quantum measurements,
which not only provides new tools for investigating non-
classical features of quantum measurement but also high-
lights the time symmetric formulation of the weak
measurement and extends its scope.
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