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We derive a kinetic theory capable of dealing both with large spin-orbit coupling and Kondo screening in
dilute magnetic alloys. We obtain the collision integral nonperturbatively and uncover a contribution
proportional to the momentum derivative of the impurity scattering Smatrix. The latter yields an important
correction to the spin diffusion and spin-charge conversion coefficients, and fully captures the so-called
side-jump process without resorting to the Born approximation (which fails for resonant scattering), or to
otherwise heuristic derivations. We apply our kinetic theory to a quantum impurity model with strong spin-
orbit, which captures the most important features of Kondo-screened Cerium impurities in alloys such as
CexLa1−xCu6. We find (1) a large zero-temperature spin-Hall conductivity that depends solely on the Fermi
wave number and (2) a transverse spin diffusion mechanism that modifies the standard Fick’s diffusion law.
Our predictions can be readily verified by standard spin-transport measurements in metal alloys with
Kondo impurities.
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Introduction.—Topological materials with strong elec-
tronic correlation and large spin-orbit coupling (SOC)
[1–7] are promising platforms for the realization of exotic
phases of matter, with potential applications in spintronics
[8–13]. One recent example that is being intensively
researched are Weyl-Kondo semimetals in heavy fermion
compounds [14–16]. Below the (Kondo) coherence temper-
ature, the local magnetic moments in these materials form a
topologically nontrivial band with Weyl points pinned at
the Fermi level. The existence of the latter is believed to
lead to the giant Hall effect in Ce3Bi4Pd3 [17]. In the
opposite limit of a periodic arrangement that yields a
coherent band structure, a giant spin-Hall effect has been
observed in disordered alloys of FePt-Au [18]. A theoreti-
cal explanation has been put forward for the latter in terms
of an orbital-dependent Kondo effect [19,20].
Driven by these exciting developments, in this Letter we

report a kinetic theory capable of describing the coupled
spin and charge transport in dilute magnetic alloys with
Kondo screened impurities as well as other types of
impurities. Note that, unlike ordinary potential scattering,
Kondo screening is a strong correlation phenomenon that
arises from the antiferromagnetic exchange interaction
between a local magnetic moment and the conduction
electrons. The screening of an impurity magnetic moment
results in a strong (often resonant) scattering of the
conduction electrons at the Fermi energy when the

temperature is lower than the Kondo temperature. Under
such conditions and in the presence of large SOC, we have
found that the spin-Hall effect is substantially enhanced and
the spin diffusion coefficients become spin anisotropic. The
abundance of dilute magnetic alloys allows our predictions
to be readily tested by existing experimental techniques
(e.g., [21]). Below, we develop a model that can be applied
to alloys containing rare earth impurities, such as Cerium in
Cex La1−xCu6 for which a robust Kondo effect has been
observed in electrical resistivity measurements [22], but no
spin-transport measurements have been carried out so far to
the best of our knowledge.
The most direct manifestations of SOC in transport

experiments are the anomalous Hall effect [23] and the
spin-Hall effect [24]. Depending on the origin of SOC, one
usually distinguishes between intrinsic and extrinsic con-
tributions to the transverse conductivity. The former is
related to SOC generated by the periodic crystal potential
of the lattice and encoded in the electronic band structure,
while the latter originates from the SOC of randomly
distributed impurities. In turn, the extrinsic contribution is
further divided into two distinct mechanisms: skew scatter-
ing and side jump. Skew scattering arises due to the angular
asymmetry of the scattering cross section and therefore it
can be readily incorporated in the collision integral of the
kinetic (Boltzmann-like) equation. Among all mechanisms,
the side jump [25–32] appears to be the least understood.
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Physically it can be attributed to a spin-dependent trans-
verse shift (jump) of a wave packet scattered off the
impurity. Since this effect does not show up in the
scattering cross section, its inclusion in the kinetic theory
is by no means straightforward. It is typically done
heuristically by defining a coordinate “jump” δr of a wave
packet, introducing the related anomalous velocity and a
modified carrier energy dispersion, and incorporating these
ingredients into the kinetic equation using reasonable, but
still nonrigorous arguments [28,33,34]. On the other hand,
a formal justification of the above procedure and/or
derivations of the side-jump contribution from the rigorous
quantum kinetic theory practically always rely on the
lowest order Born approximation [32]. Such an approach
fails for magnetic impurities of heavy elements in the
Kondo regime when neither scattering nor SOC can be
considered weak. This motivates us to construct a kinetic
theory to properly describe all extrinsic mechanisms
(including side jump) self-consistently without resorting
to any finite order Born approximation. We achieved this
by computing the lesser impurity self-energy to first order
in spatial derivative (but all orders in disorder potential
strength). This gives rise to an additional contribution to the
collision integral. When the kinetic theory is solved in the
presence of the additional contribution, the side-jump
correction to spin-Hall conductivity and diffusion constants
follows automatically without any heuristic arguments.
Our theory predicts that the standard Fick’s law of spin

diffusion is modified by SOC when we go beyond the Born
approximation: in addition to the standard Laplacian
operator ∇2s, the diffusion operator acquires a new term
∼∇ð∇ · sÞ because SOC breaks the spin-rotation symmetry.
This correction occurs at second order in SOC magnetic
field.
Kinetic theory.—We start from the Kadanoff-Baym

equation for the nonequilibrium Green functions.
Keeping only leading order terms in the impurity density
nim we sum up exactly the entire Born series and perform
gradient expansion, which allows us to obtain the following
kinetic equations [35] for the spin-density matrix
n̂p ≡ n̂pðr; tÞ:

∂tn̂p þ vp ·∇rn̂p þ i½ΣH
p ; n̂p� ¼ Î0½n̂p� þ Î1½n̂p�: ð1Þ

Here ϵp ¼ p2=ð2m�Þ is the single-particle energy
dispersion, vp ¼ ∇pϵp, and ΣH

p ¼ nimðTR
pp þ TA

ppÞ=2 is

the mean field generated by impurities, where TRðAÞ
pk is

the exact single-impurity retarded (advanced) scattering T
matrix. The T matrix also determines the collision integrals
in the right-hand side of Eq. (1), which describes, amongst
other effects, the momentum and spin relaxation caused by
impurity scattering:

Î0½n̂p�α;β ¼ 2πnim
X
k

δðϵp − ϵkÞ

×

�
TR
pkn̂kT

A
kp −

1

2
fTR

pkT
A
kp; n̂pg

�
αβ

→ −
nim
2π

X
k

Λαβ;γδðp; kÞδn̂k;γδ; ð2Þ

Î1½np�α;β ¼ πnim
X
k

δðϵp − ϵkÞ

× iðTR
pkð∇rn̂kÞ · ðDpkTA

kpÞ − H:c:Þαβ
→ πnim

X
k

Vαβ;γδðp; kÞ · ∇rδn̂k;γδ; ð3Þ

where Dpk ¼ ∇p þ∇k is a momentum shift generator.
Eqs. (2) and (3) are the main results of this work and

provide the basis for our combined treatment of strong
scattering resulting from Kondo screening and large SOC.
Equation (2) is the matrix generalization [44,45] of the
golden-rule collision integral derived by Luttinger and
Kohn [46], which has a Lindbladian structure often
encountered in open quantum systems [47]. As we explain
in what follows, the leading gradient correction to the
collision integral, Î1½np� in Eq. (3), accounts for the side-
jump mechanism. Indeed, the role of Î1 is twofold. First,
because Î1 ∼∇rn̂k, it renormalizes the velocity entering the
drift term of Eq. (1), thus generating an anomalous
contribution to the current asDpkTA

pk ¼ ihpj½TA; r�jkiwhich
has its origin in the impurity potential. Second, in the
presence of an external field that can be introduced by
trading the density for the electrochemical potential (i.e.,
∇ρ ¼ P

k Tr∇rn̂k → NF∇rμ ¼ eNFE, where E is the
electric field and NF is the density of states at the Fermi
energy), it generates a coupling to the electric field,
proportional to nim. The latter leads to the very special
scaling with the impurity concentration of the side-jump
contribution to the transport coefficients. In particular, the
corresponding contribution to the spin-Hall conductivity is
independent on nim—the well known signature of the side-
jump mechanism [23,24]. When the T matrix is replaced
with the bare impurity potential, πnimV in Eq. (3) becomes
the anomalous velocity derived in Ref. [25] within the Born
approximation.
In the most practically important linear regime, the

deviation of n̂k from the Fermi function nFðϵkÞ is bound
to the Fermi surface (FS), n̂k − nF ¼ δðϵk − ϵFÞδn̂k, where
ϵF is the Fermi energy. In this regime the collision integrals
Î0 and Î1 simplify as shown by arrows in Eqs. (2) and (3),
respectively. The fourth rank tensors Λ̌ðp; kÞ and V̌ðp; kÞ
depend only on directions of momenta on the FS and act as
superoperators on the FS density matrix δn̂k. They are
conveniently expressed in terms of the scattering S matrix
Sαβðp; kÞ and the on shell T matrix tαβðp; kÞ ¼
½1=ð2πiÞ�½δpkδαβ − Sαβðp; kÞ�≡ δðϵp − ϵkÞTαβðp; kÞ:
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Λαβ;γδðp; kÞ ¼ δpkδαγδβδ − Sαγðp; kÞS�βδðp; kÞ; ð4Þ

Vαβ;γδðp; kÞ ¼ tαγðp; kÞiðD⃗pk − D⃖pkÞt�βδðp; kÞ: ð5Þ

Λαβ;γδ has a typical form of a relaxation superoperator
commonly used to describe spin decoherence in atoms and
molecules [48,49]. The vector-valued “velocity superoper-
ator” Vαβ;γδ is related to the momentum gradient of the
scattering phase and thus to the coordinate shift of the
scattered wave packet. In fact, Eqs. (5) and (3) provide a
precise nonperturbative definition of the side-jump process
and clarify the way it enters a consistent quantum kinetic
theory.
Diffusive limit.—In a typical transport situation the

momentum relaxation length (mean free path) is much
shorter than characteristic scales of space inhomogeneities.
In this so-called diffusive regime the distribution function
δn̂k becomes almost isotropic and is fully determined by its
0th

P
k δn̂k and first

P
k kδn̂k moments:

NFδn̂k ≈ ρ1þ saσa þ 3kiðgi01þ giaσaÞv−1F ; ð6Þ

where σa are Pauli matrices, 1 is a 2 × 2 unit matrix, NF
(vF) is the density of states (Fermi velocity) at the FS, ρ and
s are the charge and spin densities, and gi0 and gia are
charge and spin parts of the first moment. By substituting
Eq. (6) into the kinetic equation and taking its 0th and first
moments we arrive at a system of equations coupled by the
moments of superoperators Λ̌ and V̌. Then, elimination of
gi0 and gia yields a closed set of equations of motion for ρ
and s—the charge-spin diffusion equations which we now
derive explicitly.
To be specific, we assume isotropic disorder potential

which leads to a T matrix that is invariant under time-
reversal, parity and the full spin-orbit rotations [50]. With
these assumptions, we diagonalized the kinetic equation by
taking suitable linear combinations of the ansatz [rhs of
Eq. (6)], and a solution can be obtained without assuming
the collision integral is small (see the Supplemental
Material Ref. [35] for full details). The 0th moment of
the kinetic equation yields the charge and spin continuity
equations

∂tρþ ∂jJj ¼ 0; ∂tsb þ ∂jJjb ¼ −sb=τs; ð7Þ

where the charge Jj and spin Jjb currents are linear
combinations of the charge and spin first moments of
δn̂k [35]. The spin relaxation time τs in Eq. (7) is
determined by the angular average of the relaxation super-
operator Λ̌, τ−1s ∼ nimtrhσaΛ̌σai.
By taking the first moment of the kinetic equation, and

solving it for the first moments of δn̂k, we relate the
currents to charge and spin-density gradients [35]:

Jj ¼ −Dc∂jρ −DθSHϵjka∂ksa ð8Þ

Jjb ¼ −
X2
m¼0

DmPm
jb −DθSHϵjkb∂kρ; ð9Þ

where Pm
jb are irreducible tensors of spin gradients:

Pm¼0
ja ¼ 1

3
δaj∂isi; Pm¼1

ja ¼ 1

2
ð∂jsa − ∂asjÞ;

Pm¼2
ja ¼ 1

2
ð∂jsa þ ∂asjÞ −

1

3
δaj∂isi ð10Þ

The diffusion currents are parameterized by the spin-Hall
angle θSH, the charge diffusion constant Dc and three spin
diffusion constants Dm, which are related to different
angular averages of the superoperators Λ̌ and V̌ [35],

θSH ¼ ð1 −Ωc − Ω1Þθsk −Ωcs −Ωscγ1
γ1 þ 2θ2sk

ð11Þ

Dc ¼ D
γ1ð1 − 2ΩcÞ þ 4θskΩcs

γ1 þ 2θ2sk
ð12Þ

D1 ¼ D
ð1 − 2Ω1Þ þ 4θskΩsc

γ1 þ 2θ2sk
ð13Þ

Dm ¼ Dð1 − 2ΩmÞ=γm; m ¼ 0; 2 ð14Þ

Here the coefficients Ωc, Ωm, Ωcs and Ωsc are generated by
the velocity superoperator V̌, e.g., Ωsc ∼ nimtrhσ · ðk×
V̌Þ1i. Physically, Ωc and Ωm renormalize the effective
charge and spin velocities, while Ωcs and Ωsc account for
the side-jump mechanism of the charge-to-spin conversion.
Finally, D ¼ 1

3
v2Fτtr, γm, and θsk, together with τs in Eq. (7)

parametrize the superoperator Λ̌. The explicit formula for
all these coefficients are provided in the Supplemental
Material [35].
The above expressions provide the complete solution to

kinetic theory in the diffusive limit. Equations (7), (8), and
(9) describe the diffusion of spin and charge for any value
of single-impurity potential strength in the dilute limit. The
linear response to an external field can be read off from the
diffusion equations using the Einstein relation, i.e., by
introducing an electric field as described under Eq. (3),
both the charge and the transverse spin-Hall conductivity
can be obtained from Eqs. (8) and (9), which yields σc ¼
e2DcNF and σSH ¼ eDθSHNF.
Instead of writing the spin current in terms of the

coefficients Dm, it is also instructive to separate explicitly
the divergenceless part of Jjb and rewrite Eq. (9) as follows:

Jjb ¼ −DT
s ∂jsb − ðDL

s −DT
s Þ∂bsj

−κð∂bsj − δjb∂kskÞ −DθSHϵjkb∂kρ; ð15Þ
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where DT
s ¼ ðD1 þD2Þ=2, DL

s ¼ ðD0 þ 2D2Þ=3, and
κ ¼ ðD2 −D0Þ=3. The third term entering this equation
with the coefficient κ is the “swapping current” predicted in
[44]. Since the swapping current and the spin-Hall current
have zero divergence, only the first line in Eq. (15)
contributes to the bulk spin diffusion equation,

∂ts −DT
s∇2s − ðDL

s −DT
s Þ∇ð∇ · sÞ ¼ −s=τs: ð16Þ

Besides the usual Fick’s term ∼∇2s [51,52], the diffusion
operator above contains an additional term ∼∇ð∇ · sÞ that
breaks the spin-rotation symmetry while preserving the
full space+spin-rotation invariance respected by SOC.
Physically, the new term leads to different diffusion laws
for the transverse sT (with ∇ · sT ¼ 0) and longitudinal sL

(with ∇ × sL ¼ 0) components of the spin density. In fact,
DT

s and DL
s are the diffusion constant for sT and sL,

respectively. To the leading order in SOC, we find
DL

s ≈DT
s , so a sufficiently large SOC is needed to make

the effect observable as we discuss next.
Quantum impurity model.—We now use a simple quan-

tum impurity model [35] to demonstrate the effect of
Kondo screening on spin-Hall conductivity σSH and the
anisotropic spin diffusion parameter DL

s =DT
s . This model is

intended to capture some of the basic features of the Ce
impurities in the Kondo-screened regime in dilute alloys
such as CexLa1−xCu6 with x < 0.7 [36,53]. Since Cu has
negligible SOC, we can use Eq. (1) to describe (extrinsic)
spin transport in this alloy. The ground state of a single f
electron in the Ce atom is a doublet which is separated by
∼100 K from a quartet [36,53] due to the crystal environ-
ment. We model this low-lying multiplet structure using a
l ¼ 1 orbital that is split by an effective SOC into a doublet
with j ¼ 1=2 and a quartet with j ¼ 3=2, as shown in
Fig. 1. Thus, we find that, contrary to conventional wisdom
[23], the spin-Hall conductivity arises entirely from the

side-jump mechanism when the T matrix is dominated by a
single non s-wave scattering channel.
In the Kondo-screened regime (i.e., T ≪ TK ∼ 1 K), the

on shell T matrix at the FS of this quantum impurity model
can be derived using standard many-body technique
described in the Supplemental Material Ref. [35], and
the result is

T̂R
kp ¼ −

eiη0 sin η0 þ ðeiη1 sin η1 þ 2eiη2 sin η2Þp̂ · k̂
πNF

1

−
�
eiη1 sin η1 − eiη2 sin η2

πNF

�
iðk̂ × p̂Þ · σ: ð17Þ

Here η1 (η2) represents the scattering phase shifts of the
l ¼ 1, j ¼ 1=2, and (l ¼ 1, j ¼ 3=2) channel shown in
Fig. 1; η0 is the phase shift of the usual s wave l ¼ 0,
j ¼ 1=2 channel. The doublet ground state of Ce is Kondo-
screened, and therefore Ce behaves as a nonmagnetic
scatterer that induces a resonant scattering phase shift.
Thus, in our model conduction electrons undergo the
strongest scattering in the η1 channel for which
η1 ¼ π=2. If we set η0 ¼ η2 ¼ 0, then θSH¼−Ωcs−Ωsc,
which yields a spin-Hall conductivity that arises entirely
from the side-jump mechanism:

σSH ¼ −
eDðΩcs þ ΩscÞNF

ℏ
¼ 4

9π2
ekF
ℏ

: ð18Þ

We have reintroduced ℏ above. It is interesting to point out
in the single scattering channel limit, σSH does not depend
on the impurity density and the specific value of η1. This is
because the nim and η1 dependence of D ¼ 1

3
v2Fτtr ∝

ðnim sin2 η1Þ−1 is exactly canceled by θSH ∝ Ωcs ∝
nimsin2η1. Importantly, unlike the case of ordinary impu-
rities with d orbitals [33,54,55] where the relationship
between η1 and η2 is determined by SOC, in our model
η1 ¼ π=2 is determined by the Kondo screening. For three
scattering channels, σSH is a complicated function of the
phase shifts η0, η1, and η2. For η0, η2 ≪ 1 channels weakly
coupled to the Kondo-screened η1 ¼ π=2 channel, we find
that Eq. (18) receives a skew scattering contribution:

σskSH ≃ −
η0
12π

�
nc
nim

��
ekF
ℏ

�
; ð19Þ

where nc ¼ k3F=3π
2 is the carrier density. The ratio of

Eq. (18) to Eq. (19) is ≈2η−10 ðnim=ncÞ. Numerically,
eσsJSH ≃ 2.72 × 10−6kF Ohm−1. If we use the standard
estimate for η0 ≃ 0.1 [19,20,33], then Eq. (18) becomes
comparable in magnitude to σskSH for nim=nc ≃ 5%, for
which the resistivity still shows the low temperature
saturation characteristic of isolated Kondo-screened
impurities. [22].

FIG. 1. Sketch of the minimal quantum impurity model to
which we have applied our kinetic theory. The impurity contains
a single electron in an l ¼ 1 orbital that, by virtue of strong spin-
orbit coupling, splits into a j ¼ 1=2 doublet and a j ¼ 3=2
quartet. Strong electron correlation leads to the formation of a
local moment. Kondo screening of the latter by the conduction
electrons induces a scattering phase shift η1 ¼ π=2 at the Fermi
energy. See the Supplemental Material [35] for a detailed
explanation of how this model captures some essential features
of Ce impurities in alloys like CexLa1−xCu6 for x < 0.7.
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Finally, let us compute the correction to the naïve Fick’s
law by calculating the deviation of DL

s =DT
s from unity. In

the limit where the doublet is Kondo screened η1 ¼ π=2,
and the other two orbitals are weakly coupled (i.e. jη0j,
jη2j ≪ 1), we obtain

DL
s

DT
s
≃ 1 −

8ni
3πnc

�
η0
3
þ η2

�
þ 4η20

9
: ð20Þ

It is interesting to point out that ðDL
s =DT

s Þ − 1 ∝ B2 where
B is the spin-orbit magnetic field defined by the square
bracket in Eq. (17). When we assume all the phase shifts are
small, i.e., jη0;1;2j ≪ 1, the leading corrections to DL

s =DT
s

are third order in the phase shifts so the spin anisotropy
cannot be captured by the first Born approximation.
Equations (16), (18), and (20) demonstrate that spin-

charge conversion mechanisms can be both quantitatively
and qualitatively modified as a consequence of the strong
scattering induced in one of the scattering channels by
Kondo screening [56].
Summary and discussion.—We have developed a kinetic

theory that provides a general framework to study spin
transport in alloys containing dilute random ensembles of
impurities with d and f orbitals. Scattering with such
impurities is treated nonperturbatively, allowing us to deal
with the strong scattering of conduction electrons on the
Fermi surface coupledwith strong local spinorbit (SOC).We
have reported an analytical solution of the kinetic equations
for a rotationally invariant system and applied it to simple
quantum impurity model designed to capture the essential
features of (Kondo-screened) Cerium impurities in alloys
such asCex La1−xCu6withx < 0.7.We find the combination
of strong scatteringand localSOClead to a largecontribution
to the spin-Hall conductivity σSH that stems entirely from the
side jump and in the limit where interference with other
channels can be neglected takes a value that depends only on
the Fermi wave number. In addition, our nonperturbative
treatment of impurity scattering allows us to show that the
spin diffusion coefficients is spin anisotropic.
The above predictions can be readily tested in spin-valve

devices where the spin current is injected from a ferro-
magnetic contact along different directions, thus allowing
one to measure the different spin diffusion lengths asso-
ciated with to DL;T

s as well as the spin-Hall conductivity
σSH. When the injected spin is polarized in the direction
parallel (perpendicular) to the direction of the current, it
measures the longitudinal DL

s (transverse DT
s ) spin diffu-

sion constant. Because of SOC, DL
s ≠ DL

s , and this will be
the most direct test of our theoretical predictions.
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