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Coulomb Instabilities of a Three-Dimensional Higher-Order Topological Insulator

Peng-Lu Zhao ,1? Xiao-Bin Qiang,l’2 Hai-Zhou Lu,"*" and X. C. Xie**”
'Shenzhen Institute for Quantum Science and Engineering and Department of Physics,
Southern University of Science and Technology (SUSTech), Shenzhen 518055, China

*Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
*International Center Jor Quantum Materials, School of Physics,
Peking University, Beijing 100871, China
*CAS Center for Excellence in Topological Quantum Computation,
University of Chinese Academy of Sciences, Beijing 100190, China
5Beijing Academy of Quantum Information Sciences,
West Building 3, No. 10, Xibeiwang East Road, Haidian District, Beijing 100193, China

® (Received 10 May 2021; accepted 16 September 2021; published 18 October 2021)

Topological insulators (TIs) are an exciting discovery because of their robustness against disorder and
interactions. Recently, second-order TIs have been attracting increasing attention, because they host
topologically protected 1D hinge states in 3D or 0D corner states in 2D. A significantly critical issue is
whether the second-order TIs also survive interactions, but it is still unexplored. We study the effects of
weak Coulomb interactions on a 3D second-order TI, with the help of renormalization-group calculations.
We find that the 3D second-order TIs are always unstable, suffering from two types of topological phase
transitions. One is from second-order TI to TI, the other is to normal insulator. The first type is
accompanied by emergent time-reversal and inversion symmetries and has a dynamical critical exponent
k = 1. The second type does not have the emergent symmetries but has nonuniversal dynamical critical
exponents k < 1. Our results may inspire more inspections on the stability of higher-order topological
states of matter and related novel quantum criticalities.
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Introduction.—As generalizations of the topological
insulators (TIs) [1-12], higher-order TIs have been attract-
ing considerable interest recently [13-30]. A simplest 3D
second-order TI hosts 3D gapped bulk states inside but
topologically protected gapless 1D hinge states and gapped
2D surface states (Fig. 1). There have been experimental
evidences for the higher-order topology in bosonic systems,
including circuitry [31-33], phononics [34], acoustics
[35-37], and photonics [38—41]. Despite the theoretical
predictions on material candidates [18,19,42—45], there are
few observations of higher-order TIs in electronic systems
[19]. This raises concerns about the stability of higher-order
TIs against, e.g., disorder [46—49]. More importantly, it is
still unknown whether higher-order TIs can survive a more
intrinsic presence in electronic systems, the Coulomb
interactions [49-61].

In this Letter, we study the stability of 3D second-order
TIs in the presence of the Coulomb interaction. We find that
the second-order TIs are always unstable. Two types of
topological phase transitions could happen (Fig. 1). In the
first type, a topological phase transition from second-order
TI to TI happens in the presence of the Coulomb inter-
action. This transition is accompanied and protected by the
emergent time-reversal and inversion symmetries in the
low-energy limit. The quantum criticality for this phase
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transition is described by a dynamical critical exponent
k=1 and a correlation length exponent v = 1. In the
second type, the Coulomb interaction could induce another
topological phase transition from a second-order TI to a
normal insulator (NI). There is no emergent symmetry
when this phase transition happens, and its criticality is
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FIG. 1. Schematic of a typical 3D second-order TI (left) that

hosts 3D gapped bulk states in the interior but topologically
protected 2D massive (gapped) Dirac cones on the surfaces and
gapless 1D chiral hinge states. It may turn to a TI (right top) or a
NI (right bottom) in the presence of the Coulomb interactions.
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characterized by the appearance of nonuniversal dynamical
critical exponents k < 1. Our results will be insightful for
the ongoing experimental search for higher-order TIs in
electronic systems.

Model for 3D second-order Tls.—We start with a four-
band Hamiltonian for 3D second-order TIs [18],

Ho(k) = {M + Zt,- cos(ak,»)] 7,00 + ZA,- sin(ak;)
X 7,0; + Ay[cos(ak,) — cos(aky)]z,0, (1)

where i = x, y, z, a is the lattice constant, and ¢; and z; are
the Pauli matrices. M, t;, A;, A, are the hopping param-
eters, and we take t, =1, =1, and A, = A, = A, . This
model has no time-reversal symmetry if A, #0 (see
Supplemental Material, Sec. SI [62]). A fourfold rotation
symmetry Ry, = 7ye~'"/4: is broken by the nonzero A,
term. The combination R, 7 (7 is the time-reversal
operator) is a symmetry that protects the 3D second-order
TIs. Another important symmetry is the combination of
time reversal and inversion Z7 (Supplemental Material,
Sec. SII [62]), where 7 = 7,005, with which the Z,
invariants are identified by

N/2

(=1)* = [T &r- 2)

i n=1

where &,(I';) = +1 is the eigenvalue of Z for the
nth occupied energy band at momenta I';, and I; €
{(0,0,0), (z, #,0), (0,0, ), (z, z, )} representing all the
R, 7T -invariant k points. As a result, for |27, — .| <
M| < |2t; +t,, (=1)®=—1 (Supplemental Material,
Sec. SII [62]), which represents the second-order TI and
for [M| > |2t, + t,| or [M| < |2t —t.|, (=1)? = 1, which
stands for a NI. This difference establishes only when
A; #0 # A,. Once A; = 0, there exist gapless points that
break the insulating nature. Once A, = 0, time-reversal
symmetry recovers and the phase is a TI. Below, we show
that, even if starting with A, # 0 and |27, —1,| < |M| <
|2¢, +t.|, A, flows to zero in the low-energy limit in the
presence of the Coulomb interaction, leading to a transition
from second-order TI to TI, or causes |M| > |2t +1,
which induces a transition from second-order TI to NI.

Coulomb interaction and  renormalization-group
equations.—The effective action in Euclidean spacetime
for the second-order TI in the presence of the Coulomb
interaction takes the form (Supplemental Material,
Sec. SIIIA [62])

E

S= / ded’r{ip[(9; + igh)ro + viy;0; + m + B;0;

~ D3 = Byl + 1m0}, g

where y describes a four-component fermion field and
W =wy'y,. The y matrices satisfy the anticommuting
algebra {y,,7,} = 28,,. The repeated index i sums for
i=x,y,zandv;, = Aja,m =M +2t, +t,B; =t;a*/2,
and D = A,a?/2, which are obtained by expanding Eq. (1)
around the I" point. The parameter m is the Dirac mass, and
the B; and D terms represent the quadratic corrections to
the Dirac Hamiltonian. We introduce an auxiliary scale
field ¢ through the Hubbard-Stratonovich transformation
[63] to decouple the density-density Coulomb interaction.
(ne.my.n.) = (1,1,5) characterize the spatial anisotropy
of ¢p. g = e/+/e represents the coupling between electrons
and the scalar field, where —e is the electron charge and € is
the dielectric constant. The Coulomb interaction does
not break the R, 7 and Z7 symmetries of Eq. (1)
(Supplemental Material, Sec. SIITA [62]), and the topology
is still distinguished by Eq. (2). The noninteracting invari-
ant for interacting systems has been justified in [18,68].
According to Eq. (1), m controls the gap [3,9,69]. Its sign
identifies the phase transition between a second-order TI
and NL

To explore how the Coulomb interaction renorma-
lizes the parameters and consequently leads to the phase
transitions, we perform a Wilsonian momentum-shell
renormalization-group analysis [64,70] for Eq. (3). We
redefine the original parameters B;, D, m, and »; and
Coulomb interaction strength ¢ into dimensionless

quadratic terms: B;Av 'n7! - B, DAv™!' = D,
anisotropy : 2 =v,/(vm),
gap: mv ATl = m,
Coulomb: 7/ (4n*v\/n) — a, (4)

where A is the cutoff, v = v, . The renormalization-group
flow equations for them can be found in the Supplemental
Material, Sec. SIHIC [62]. We numerically solve these
renormalization-group equations and obtain the running of
m, B;, D, a, and y? with £, where £ is the running scale
parameter whose value increase lowers the energy scale.
Despite the fact that the running of these parameters highly
depends on their initial values at the cutoff A, their behaviors
can be classified into two types of phase transitions.
From second-order TI to TI.—This phase transition is
characterized by a vanishing D without a sign change of m
at large £ (low energy). Figure 2(a) shows that, in a large
range of Dy, D flows to zero rapidly with increasing £. This
behavior reflects the fact that the renormalization-group
equation for D [Supplemental Material [62], Eq. (S112)]
only has one stable fixed point at D, = 0. As D flows to
zero, m increases and remains positive [Fig. 2(b)]. The
unrestricted growth of m ceases the rapid decay of «
[Fig. 2(c)]. Although the effective Coulomb interaction
is marginally irrelevant [Supplemental Material [62],
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FIG. 2. (a)—(c) The renormalized D, m, and « as functions of the

running scale parameter . D and m protect the second- and first-
order topological properties, respectively. The vanishing D and
increasing m mean a topological phase transition from second-
order TT to TI. (d) The scale dependence of the dynamic exponent
k, whose value is obtained by fixing » as scale invariant. The
solutions are obtained by fixing the initial values mozB(j_ =1,
B? =0.5, ay = 0.1 = y3 = 0.1 while varying Dy. (a)~(d) share
the same legends. In (b), the m(#) curves of Dy = 5, 10, and 20 are
shifted vertically by 1 for clarity.

Eq. (S113)], its value in the low-energy limit is a small
constant instead of zero [see Fig. 2(c)]. With no sign change
of m, there is no gap closing and reopening near the I" point
when approaching the low-energy limit, and the topological
invariant does not change. However, when D flows to zero,
the free part of the effective model (3) reduces to the
modified Dirac Hamiltonian that describes TIs [7,9].
According to the previous results [51,71-73], TIs are
immune to weak Coulomb interactions. Therefore, the
low-energy state is a TI with finite but weak Coulomb
interactions, which means that the second-order TI is
unstable to the Coulomb interaction. After the transition
from the second-order TI to TI, the hinge modes disappear
only because the surface gaps close, so it does not require a
gap closing of the 3D bulk states. Time-reversal symmetry
and inversion symmetry emerge along with the phase
transition. Previous works have shown the possibilities
of emergent Lorentz symmetry [74-81], chiral symmetry
[82—84], and supersymmetry [85-96]. Our concrete exam-
ple above shows the emergent discrete time-reversal and
inversion symmetries, enriching the family of emergent
symmetries [97]. This phase transition does not need a large
critical value of a and exists at least for a~ 1073,
corresponding to an extremely weak Coulomb interaction
(Supplemental Material, Sec. IV [62]). We find that the
dynamical critical exponent k = 1 for this phase transition,
as shown in Fig. 2(d). We also obtain a correlation length
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FIG. 3. (a),(b),(d) The renormalized m, D, and « as functions of

the running scale parameter £. D and m protect the second-order
and first-order topological properties, respectively. The finite D at
the sign change of m means a topological phase transition from
3D second-order TI to NI. (c) The scale dependence of k. The
solutions are obtained by varying the initial value of D while
fixing those of other parameters as my = 0.2, B(i = ZB? =2,
ag = 0.5, and y% = 0.1. (a)—(d) Legends are the same. The orange
dashed lines in (a)—(c) label the values of # at the phase transition
points. (b),(c) The crossing points of the orange dashed lines with
the red, black, blue lines indicate the values of D and x when the
phase transition occurs. From left to right, D = 0.43, 0.72, 0.74
in (b) and ¥ = 0.79, 0.81, 0.83 in (c).

exponent v = 1 by assuming that the spatial correlation
length & diverges as 6 =D — D, — 0 in the manner of
&~ 8|7, This definition is similar to the conventional
definition of the correlation length exponent in a symmetry-
broken quantum phase transition [98,99].

From second-order TI to NIL—This phase transition
is characterized by a sign change of m and a finite D as
m changes sign. Here, the finite D guarantees that the
topological phase transition to NI happens before the
transition to TI. Figure 3(a) shows that m changes sign
when D, is below a critical value. For comparison, the
green line shows a case in which m does not change sign.
Figure 3(b) shows that D does not vanish when m changes
sign. Therefore, for the parameters represented by the red,
black, and blue lines in Fig. 3(a), the transitions from
second-order TI to NI happen and for the case depicted by
the green line the transition from second-order TI to TI
happens. After the transition from the second-order TI
to NI, both the hinge and surface modes disappear. Because
of the finite D, there are no emergent time-reversal and
inversion symmetries at the phase transition point. After the
transition, these two emergent symmetries appear in the
low-energy limit of the NI. Interestingly, this transition has
no universal dynamical critical exponent. Figure 3(c) shows
that the dynamical critical exponent has different values
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for the three cases, all below 1. A nonuniversal k < 1 is a
direct result of the transition happening at a finite energy
scale 7. By fixing the fermion velocities as scale invariant,
we obtain

k(£) =1-a(£)Fg(2), (5)

where 3 is a dimensionless function of m, B;, D, and y?
whose expression is given by Eq. (S36) in the
Supplemental Material [62]. The values of a(¢) are always
positive constants [see Fig. 3(d)], and the non-negative
Fg(£) vanishes only as £ — co. Considering that the sign
change of m always happens at a finite #, the value of « is
smaller than 1 and its particular value depends on o and
Fg(£), and hence it is nonuniversal. However, as shown in
Fig. 3(c), the asymptotic value of x as £ — oo is still 1,
which describes the low-energy dynamics of the NI. We
have shown our main results by varying the initial value of
D while fixing those of the other parameters. We could
perform similar analyses for any cases by changing the
initial value of one parameter while fixing others, but our
conclusions still hold.

Screened Coulomb interaction.—The screening of
Coulomb interaction cannot change our main conclusions.
Because of the existence of gap m, once the Fermi energy is
placed in the gap, the density of states vanishes. The
screening effect is extremely weak (Supplemental Material,
Sec. SVA [62]), compared to those in metals and semi-
metals, which implies that the treatment and conclusion are
probably different for higher-order semimetals. Because of
the weak screening effect, our conclusions also apply to
large but not infinitely large-N flavors of fermions. This is
different from the 2D gapless systems where the screening
is strong and a large-N expansion was widely used to study
the Coulomb effects [59,100,101].

Effect of coexisting disorder.—We introduce disorder
described by 6H = U;(x)pTw [65-67], where I'; is a
4 x 4 Hermitian matrix and U, (x) is the impurity potential
of a Gaussian white-noise distribution as (U;) = 0 and
(U:(x)U;(x")) = A;6;;6(x — x'). The types of disorder that
respect R4, 7 and Z7 symmetries are denoted by I'; = Z 4,4
and I'; = y, (Supplemental Material, Sec. SVI [62]) and are
dubbed the random mass and random chemical potential,
respectively. The coupling strength A;, for the random
mass is irrelevant [Fig. 4(a)] and hence it cannot prevent the
phase transitions in the clean system. Figure 4(b) shows
that the coupling strength A. has a critical value Af. for
the random chemical potential. Once the initial value A%
is smaller than A, the random chemical potential is
also irrelevant and cannot change our conclusions
(Supplemental Material, Sec. SVI of [62]). The disorder-
induced renormalization to the gap m shifts the boundaries
between the two kinds of phase transitions. Figure 4(c)
shows that the boundaries between the phase transition to
TI and NI for systems without disorder, with random mass,
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FIG. 4. (a),(b) The renormalized A, and A.. The different

curves are obtained by fixing the initial values my = B(i =
B? =y} =0.1, ay = 0.5 while varying the initial values of
Ay in (2) and Ac in (b). (¢)—(f) Phase diagrams in the m—a,
Ac—a, D—a, and B—a planes, respectively. SOTT and CDM stand
for the second-order topological insulator and compressible
diffusive metal, respectively. In (c), the black, red, and blue
lines represent the boundaries for the cases without disorder, with
random mass A9, = 0.3 and with random chemical potential
A% = 0.3, respectively. No disorder in (e) and (f). In (f), we take
B(i =B, = B. The other parameters are fixed at (c)-(e)
B =B =1; (d)-(H) my=0.1; ©d),(f) Dy=1, 1, 0.1,
respectively; y3 = 0.1 for all diagrams.

and with random chemical potential are different. If
A > A¢, a disorder-induced phase transition happens
and the system flows to a disorder-dominated phase,
dubbed the compressible diffusive metal [47,62]. There
exist three phases in the A-—a plane, as shown in
Fig. 4(d).

Phase diagrams.—To have a global view of the various
phases, we show four phase diagrams on the planes of
different parameters in Figs. 4(c)-4(f). According to
Fig. 4(c), m plays a key role to determine the type of
phase transition. Once m is large enough, the transition to
NI cannot happen. Because of the dominant role of m, our
conclusion also applies to other 3D second-order TIs (e.g.,
the helical second-order TI [18]), in particular, when the
topology depends on the quadratic or higher-order correc-
tions to the Dirac Hamiltonian (e.g., the D-term in our
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model). According to our calculation, these terms are all
irrelevant in the low-energy limit, which causes the transition
to TIL. The transition from second-order TI to NI originates
from the Coulomb-interaction-induced interplay between the
anisotropic quadratic term (B;) and gap (m), which does not
depend on the terms protecting the second-order TIs and
hence still exist for other 3D second-order TIs.

Discussion.—Our results show that the Coulomb inter-
actions are critical in the experiments searching for higher-
order TIs, even for weak Coulomb interactions. Stronger
interactions may induce fractional higher-order topological
phases or excitonic insulators, as those in the first-order
topological phases [102-107].

Our theory shares a similar spirit as the transition between
TI and NI in BiTI(S,_sSes), [108] by varying &. By fixing
the parameters at the cutoff and analyzing their behaviors at a
particular low-energy scale, the change of their initial values
is equivalent to their changes at the particular energy scale
relevant to the experiment. Therefore, the topological phase
transitions from higher-order TI to NI or TI are possible in
experiments using doping, such as the candidate materials
bismuth [19], Euln,As, [44], and MnBi, Te, [45], where the
1D gapless hinge states may transform to gapped states or
2D Dirac cone.
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