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Multifold degenerate fermions have attracted a lot of research interest in condensed matter physics and
materials science, but always lack in two dimensions. In this Letter, from symmetry analysis and lattice
model construction, we demonstrate that eightfold degenerate fermions can be realized in two-dimensional
systems. In nonmagnetic materials with negligible spin-orbit coupling, the gray magnetic space groups
together with SU(2) spin rotation symmetry can protect the two-dimensional eightfold degenerate fermions
on a certain high-symmetry axis in the Brillouin zone, no matter whether the system is centrosymmetric or
noncentrosymmetric. In antiferromagnetic materials, the eightfold degenerate fermions can also be
protected by certain “spin space groups.” Furthermore, by first-principles electronic structure calculations,
we predict that the paramagnetic phase of the monolayer LaB8 on a suitable substrate is a two-dimensional
eightfold degenerate as well as Dirac node-line semimetal. Especially, the eightfold degenerate points are
close to the Fermi level, which makes monolayer LaB8 a good platform to study the exotic physical
properties of two-dimensional eightfold degenerate fermions.
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Introduction.—In high-energy physics, relativistic mass-
less Dirac fermions and Weyl fermions are the representa-
tions of the Poincaré group. At zero momentum, the
massless Dirac fermions and Weyl fermions are four- and
twofold degenerate, respectively. In condensed matter phys-
ics, the massless Dirac andWeyl fermions have been realized
as the low-energy quasiparticle excitations [1–7]. The
physical properties of massless Dirac and Weyl particles
known in high-energy physics, such as the chiral anomaly,
have also been observed in condensed matter physics [8,9].
On the other hand, 230 space groups are subgroups of the
Poincaré symmetry; thus condensed matter systems have
less constraints and new fermionic quasiparticles beyond
high-energy physics can emerge [10–16]. For instance,
three-, six-, and eightfold degenerate fermionic quasipar-
ticles were proposed theoretically [10–16] and later realized
in experiments [17,18]. So far, the new types of quasipar-
ticles beyond the Dirac and Weyl fermions have been only
studied in three-dimensional semimetals.
Two-dimensional (2D) systems contain rich physics in

condensed matter. For instance, the first example of Dirac
semimetal was realized in a 2D material—the graphene
[19]. Furthermore, some special phenomena only exist in
two dimensions (or at the surface of three-dimensional
lattice systems), such as the integer and fractional quantum
Hall effect and the quantum spin Hall effect [20–22]. In 2D
systems, the point groups are uniaxial and the highest point
group symmetry is D6h. The relatively lowered symmetries

thus strongly restrict the types of quasiparticles. For
instance, the threefold degeneracy can never be protected
in 2D materials since the uniaxial point groups do not have
three-dimensional irreducible (projective) representations.
The previously mentioned new types of nontrivial quasi-
particles, if they exist in 2D, must be protected by non-
symmorphic space groups supporting layered structures.
In this Letter, based on group theory analysis and lattice

model calculations, we demonstrate that the highest degen-
eracy of quasiparticles is eight, which is located on a high-
symmetry line (HSL) in the Brillouin zone (BZ). Among
the space groups supporting layered structures, four can
protect eightfold degeneracy, including three centrosym-
metric space groups (i.e., 51, 55, 127, with little cogroup
C 2v × fE; IT g, where I and T , respectively, stand for
space-inversion and time-reversal operation) and one non-
centrosymmetric space group (i.e., 26 with little cogroup
20m0m ¼ fE;C2xT ;MyT ;Mzg). More importantly, as long
as the intrinsic spin-orbit coupling is negligible, the eight-
fold degenerate fermions can also stably exist in magnetic
semimetals with collinear antiferromagnetic order, even if
the Zeeman coupling between the spins of itinerary
electrons and the local magnetic momentum essentially
gives rise to spin-orbit coupling. These magnetic semimet-
als belong to two type-III magnetic space groups (51.293,
55.355) and six type-IV magnetic space groups (51.299,
51.300, 51.302, 55.360, 55.361, 127.396). Strictly speak-
ing, in these systems, the magnetic space groups are
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enhanced to spin space groups in which the spin rotations
are (partially) unlocked with the lattice rotations; accord-
ingly the little cogroups of the HSLs are enhanced
to a “spin point group” containing C 2v × fE; IT g as a
subgroup (for details, see the Supplemental Material [23]).
Finally, by first-principles electronic structure calculations,
we predict that the monolayer LaB8 on a suitable substrate
is a 2D eightfold degenerate as well as Dirac node-line
semimetal in paramagnetic phase.
Symmetry analysis.—Because of fractional translations

associated with point-group operations, the little cogroup of
some k points at the boundary of the BZ may have
high-dimensional projective representations. These high-
dimensional projective representations lead to extra degen-
eracies in the electronic energy band structure. There are a
portion of the Dirac semimetals and Dirac node-line semi-
metals protected by nonsymmorphic space groups [39–43].
To understand the emergence of the eightfold degen-

eracy, we check the P4=mbm (127) space group symmetry
as an example. The elementary symmetry operations of the
P4=mbm space group includeC4z,C2yð1=2; 1=2; 0Þ, and I ,
which yield the point groupD4h. Since there is no fractional
translation along the z direction, the space group P4=mbm
can support quasi-2D lattice structure. In the following, our
discussion is restricted to the xy plane with the BZ shown in
Fig. 1(a). Obviously, any k point on the Xx-M line is
invariant under the following symmetry operations: the
screw rotation C2yð1=2;1=2Þ∶ðx;yÞ→ ð−xþ1=2;yþ1=2Þ,
the glide mirror Mxð1=2;1=2Þ∶ðx;yÞ→ð−xþ1=2;yþ1=2Þ,
and the mirrorMz∶ðx; yÞ → ðx; yÞ. Furthermore, since T is
always a symmetry element of nonmagnetic materials,
the Xx-M line is also invariant under the combined
symmetry operations IT . Noticing that the square of the
symmetry operation C2yð1=2; 1=2ÞIT ¼ Myð1=2; 1=2ÞT
is ½Myð1=2; 1=2ÞT �2 ¼ ð1; 0Þ, the square of the represen-
tation of Myð1=2; 1=2ÞT is equal to −1, resulting in a
Kramers degeneracy in the energy spectrum. In other
words, the fractional translations of the nonsymmorphic
group give rise to two-dimensional irreducible projective
representations of the little cogroup of the Xx-M
line, i.e., C 2v × ZIT

2 with C 2v ¼ fE;C2y;Mx;Mzg and
ZIT
2 ¼ fE; IT g. This projective representation makes

Xx-M a nodal line [see Fig. 1(b)].

On the other hand, since Myð1=2; 1=2ÞT commutes with
Mz, the Xx-M axis has two inequivalent Kramers pairs
distinguished by the quantum number�1, the eigenvalues of
Mz. This can be seen more clearly from the character table
(Table I) of the unitary part of the little cogroup C 2v and the
action of the antiunitary operation IT . Obviously, the two
one-dimensional irreducible representations Dð1Þ and Dð2Þ

form a Kramers pair, while Dð3Þ and Dð4Þ form another
Kramers pair. Because of different quantum numbers ofMz,
the two Kramers pairs are not equivalent; also see the group
theory analysis in the Supplemental Material [23].
If a band with the first Kramers pair crosses another band

with the second Kramers pair, a pair of crossing points are
formed on theXx-M axis, as shown in Fig. 1(c). On the other
hand, since spin-orbital coupling is not taken into account, the
spin space has SU(2) symmetry, which protects the spin
degeneracy. Therefore, the pair of crossing points are eight-
fold degenerate. Because of theC4z symmetry, another pair of
eightfold degenerate points can be found on the Xy-M axis.
Interestingly, even if the I (and hence IT ) is broken, the

Myð1=2; 1=2ÞT symmetry still protects the Kramers pairs
on the Xx-M axis and the quantum number ofMz symmetry
still guarantees that there are two inequivalent Kramers
pairs. Hence, even when the little cogroup reduces
to 20m0m ¼ fE;MyT ;Mz; C2xT g × SUð2Þ owing to the
missing central inversion, the Dirac nodal-line structure and
the eightfold degenerate points on the Xx-M axis are still
protected. However, since C4z and Mxð1=2; 1=2ÞT are no
longer symmetry operations, the Dirac nodal line is lifted
on the Xy-M axis and the eightfold degenerate points split
into several cones with lower degeneracy.
Effective lattice model.—Here we provide a lattice model

to illustrate the eightfold degeneracy protected by the
P4=mbm space group symmetry. The minimal model is
on a square lattice including four sublattices, as shown in
Fig. 2(a). We begin with a Hamiltonian composed of s
orbitals, including the hopping between the nearest and
next-nearest neighbors as follows:

hk ¼ tð1þ cos kxÞΣ01 þ t sin kxΣ32 þ tð1þ cos kyÞΣ11

− t sin kyΣ21 þ t0=2½1þ cosðkx þ kyÞ�Σ10

þ t0=2½1 − cosðkx þ kyÞ�Σ13

− t0=2 sinðkx þ kyÞðΣ20 − Σ23Þ; ð1Þ

x

(a) (b)

x

yX xX M

(c)

xX M

FIG. 1. (a) The BZ of square lattice. Schematic illustration for
generation of (b) a Dirac nodal line and (c) eightfold degenerate
point for P4=mbm space group. The “EP” represents eightfold
degenerate point.

TABLE I. Character table of C 2v group at the Xx-M axis.

C2v E C2yð1=2; 1=2Þ Mz Mxð1=2; 1=2Þ
Dð1Þ 1 −i 1 −i
Dð2Þ 1 i 1 i

Dð3Þ 1 −i −1 −i
Dð4Þ 1 i −1 i
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where Σij ¼ si ⊗ sj describes the sublattice degrees of
freedom, s0 is the 2 × 2 identity matrix, s1, s2, and s3 are
the Pauli matrices, and t and t0 are the nearest neighbor and
next-nearest neighbor hopping integrals, respectively. It is
obvious that the system preserves both T and I symmetry.
The spin index is omitted since spin-orbital coupling is
ignored. According to the above symmetry analysis, the
eightfold degenerate points are formed by the crossing of
two Kramers bands with different quantum numbers
labeled by the eigenvalues of Mz. Since the s orbitals
carry quantumþ1 ofMz, the pz orbitals should be included
in the Hamiltonian, yielding

Hk ¼ hk þmτ3; ð2Þ

where the Pauli matrix τ3 acts on the orbital degree of
freedom.
The band structure with parameters t ¼ 2t0 ¼ m ¼ 1 is

shown in Figs. 2(b) and 2(c). We can see a double
degeneracy in addition to spin degeneracy on the Xy-M
line, which is protected by the Mxð1=2; 1=2ÞT symmetry.
As expected, the eightfold degenerate point is generated
by the crossing energy bands with different quantum
numbers of Mz. We also calculated the edge sates at the
open boundaries in the x direction. As shown in Fig. 2(d),
there are no edge states connecting the two eightfold
degenerate points, which is different from the Dirac
semimetals caused by band inversion [2,3].

Furthermore, we break I symmetry by distinguishing
the red and black sites in Fig. 3(a) by adding an on-site
different potential energy on the red and black sites in
Fig. 3(a), namely, t0Σ30 in the Hamiltonian. Now the new
Hamiltonian H0

k ¼ Hk þ t0Σ30 preserves C2xð1=2; 1=2ÞT ,
Myð1=2; 1=2ÞT , and Mz symmetries. As expected, the
eightfold degenerate point on the Xy-M axis is lifted, but the
one on the Xx-M axis remains, as shown in Fig. 3(b) plotted
with t0 ¼ 0.5t. Thus the 2D eightfold degenerate semimetals
can stably exist in noncentrosymmetric systems.
Now we provide all the space groups that can protect the

eightfold degeneracy in 2D semimetals. First, there are only
17 nonsymmorphic space groups supporting 2D layered
structures as listed in Table II, which may protect 2D
eightfold degenerate fermions. Second, we have just
shown that with extra SU(2) spin rotation symmetry there
are two kinds of little cogroups that can protect the
eightfold degeneracy, namely, C 2v × ZIT

2 and 20m0m.
Since time reversal T is always a symmetry of the
system, the unitary point group of the required space group

(a) (b)

(c) (d)

FIG. 2. Energy bands for the lattice model with eightfold
degenerate points under the P4=mbm group. (a) A schematic
representation of the square lattice with the nearest and next-
nearest neighbor hopping integrals. The red square marks the unit
cell. (b),(c) The band structures of lattice model along the high-
symmetry directions. (d) Energy spectrum for a nanoribbon with
60 unit cells in the x direction and infinite along the y direction.
The red (black) bands represent the mirror Mz eigenvalue 1(−1).
The edge states are labeled by blue. The eightfold degenerate
points are marked by green dots.
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FIG. 3. Lattice model and bands structures. (a), (b) Breaking I
symmetry. (c),(d) Breaking I and T symmetry with an out-of
plane antiferromagnetic order. The red (black) bands represent
the mirror Mz eigenvalue 1(−1). The eightfold degenerate points
are marked by green dots. The red arrows represent magnetic
moment.

TABLE II. The relationship of two-dimensional nonsymmor-
phic space group and eightfold degenerate semimetals.

Point group Space groups Eightfold degeneracy

C2v 26 Yes
C2v 27,28,29,30,31 No
D2h 49,50,53,54,57,59 No
D2h 51,55 Yes
D4h 125,129 No
D4h 127 Yes
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should contain C 2v × fE; Ig ¼ D2h (if I is present) or
C 2v ¼ fE;My;Mz; C2xg (if I is absent) as its subgroup.
It turns out that all of the 17 space groups satisfy the
second requirement.
Third, the fractional translation associated with the

little cogroup elements (on a HSL) should support two
inequivalent Kramers degeneracies. The Kramers degen-
eracy can be protected by one of the following symmetry
elements: Mxð1=2; 1=2ÞT , Mxð0; 1=2ÞT , C2xð1=2; 1=2ÞT ,
C2xð1=2; 0ÞT , Myð1=2; 1=2ÞT , Myð1=2; 0ÞT , C2yð1=2;
1=2ÞT , or C2yð0; 1=2ÞT . We further need the operation
Mz to provide the quantum numbers �1 to distinguish two
inequivalent Kramers pairs. It turns out that only four space
groups (51, 55, 127, and 26) satisfy the above require-
ments, as shown in Table II. Different from the 127
(P4=mbm) space group, the eightfold degenerate points
protected by the 26(P-mc21) or the 51(P-mma) space
group can only locate at one boundary axis of the 2D BZ.
The 55(P-bam) space group is special, the eightfold
degenerate points can locate at either one or two boundary
axes in the 2D BZ.
Finally, we consider an out-of-plane collinear antiferro-

magnetic order that breaks the I and T symmetry
but preserves the combined IT symmetry, as shown in
Fig. 3(c). Then the new Hamiltonian becomes H0

k ¼ Hk þ
2tmΣ30ðσz=2Þ (the second term is the Zeeman coupling
between the local magnetic momentum and electron spin,
with ðσz=2Þ the z component spin operator). While the
Zeeman term introduces spin-orbit coupling to the
Hamiltonian, the operations C2yð1=2;1=2Þ, Mxð1=2;1=2Þ,
Mz, and IT remain to be symmetries of the HamiltonianH0

k
if each operation is interpreted as a combination of lattice
operation and the corresponding spin rotation. If the intrinsic
kinetic term Hk has negligible spin-orbit coupling, then the
total Hamiltonian H0

k has extra symmetries since the system
is invariant under spin rotation ðC2zjjEÞ and lattice mirror
reflection ðEjjMzÞ (hereC2z acts on spin only, whileMz acts
on lattice only). In other words, the little cogroup on the
Xx-M line is enlarged into a spin point group containing the
Shubnikov magnetic point group C 2v × ZIT

2 as a subgroup.
This spin point group can protect the eightfold degenerate
points on the Xx-M axis (see the Supplemental Material [23]
for details). The dispersion of a lattice model with tm ¼ 0.2t
is shown in Fig. 3(d). Notice that the eightfold degenerate
point on the Xy-M axis is lifted due to the absence of
C2xð1=2; 1=2Þ and Myð1=2; 1=2Þ symmetry as shown in
Fig. 3(d).
Therefore, the sufficient conditions of the eightfold

degeneracy include the following: (1) the system contains
out-of plane collinear antiferromagnetic order, (2) the
intrinsic spin-orbit coupling for the electrons is negligible,
and (3) the Shubnikov little cogroup on a high-symmetry
line is C 2v × ZIT

2 . It turns out that only eight magnetic
space groups satisfy the above condition, including two
type-III magnetic space groups (51.293, 55.355) and six

type-IV magnetic space groups (51.299, 51.300, 51.302,
55.360, 55.361, 127.396).
Material calculations.—In terms of realistic materials,

since 2D eightfold degenerate semimetals are fragile when
considering spin-orbit coupling (SOC), we can find 2D
eightfold degenerate semimetals in layered light element
compounds. Here, we propose a new 2D structure LaB8,
which is constructed from the bulk LaB4 [44] under space
group P4-mbm. The monolayer LaB8 is made up of two
layers of B atoms and one layer of La atoms as shown in
Figs. 4(a)–4(c). The B atomic layer is made up of B atomic
octahedron and B atoms [Fig. 4(a)].
In order to confirm the structural stability, we calculated

the phonon spectrum of monolayer LaB8 as shown in
Fig. 4(d). Clearly, the phonon spectrum of monolayer LaB8

has no imaginary frequency, thus the crystal structure is
dynamically stable. As shown in Fig. 4(e), the electronic
band structure of monolayer LaB8 has six Dirac nodal lines
around the Fermi level, which can be divided into two
kinds. One kind derives from the band inversion around
the time-reversal invariant Γ point and is protected by the
mirror symmetry Mz, while the other one must be in the
X-M axis and is protected by nonsymmorphic symmetry as
the above symmetry analysis. Without strain, the mono-
layer LaB8 unfortunately does not support the eightfold
degenerate fermions. But the two Dirac nodal lines along
the X-M direction have different quantum numbers of Mz
and are very close around the high-symmetry point X
[Fig. 4(e)]. By applying lattice strain, the nodal lines could

(a) (d)

(b) (e)

(c) (f)

FIG. 4. Crystal structure of monolayer LaB8 viewed along
(a) [100], (b) [110], and (a) [001] directions. The red and green
balls represent La and B atoms, respectively. (d) Phonon spec-
trum of monolayer LaB8 along the high-symmetry directions.
The electronic band structures of monolayer LaB8 along the high-
symmetry directions for (e) relaxed crystal structure and (f) com-
pressing the lattice constant by 3%. The “þ” and “−” represent
the eigenvalue of mirror Mz with 1 and −1, respectively. The
eightfold degenerate points are marked by blue dots.
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probably touch each other and produce the eightfold
degenerate points. When compressing the lattice constant
by 3%, the nonmagnetic state of a monolayer LaB8 indeed
contains eightfold degenerate fermions as shown in
Fig. 4(f). Although the stressed LaB8 actually exhibits
ferromagnetic order at zero temperature, it is argued in the
Supplemental Material [23] that the eightfold degenerate
fermions still exist at finite temperatures. Because of the C4

rotation symmetry, the monolayer LaB8 has eight eightfold
degenerate points. Moreover, since the SOC has very weak
influence on the bands around the Fermi level [23], the
monolayer LaB8 on a suitable substrate may be an ideal
platform for studying the exotic properties of 2D eightfold
degenerate fermions in the paramagnetic phase.
In summary, based on symmetry analysis, lattice model,

and the first-principles electronic calculations, we obtain
five main results: (i) The eightfold degenerate fermions can
stably exist in 2D systems. (ii) The little cogroups C 2v ×
fE; IT g and 20m0m ¼ fE;C2xT ;MyT ;Mzg on a certain
HSL in the Brillouin zone can protect the 2D eightfold
degenerate fermions in centrosymmetric or noncentrosym-
metric nonmagnetic systems, respectively. (iii) There are
four space groups that can protect eightfold degenerate
fermions, including three centrosymmetric space groups
(51, 55, 127) and one noncentrosymmetric space group
(26). (iv) As long as the intrinsic spin-orbit coupling is
negligible, the eightfold degenerate fermions can also stably
exist in magnetic semimetals with collinear antiferromag-
netic order belonging to two type-III magnetic space groups
(51.293, 55,355) and six type-IV magnetic space groups
(51.299, 51.300, 51.302, 55.360, 55.361, 127.396), even if
the Zeeman coupling between the spins of itinerary electrons
and the local magnetic momentum actually contains spin-
orbit coupling. (v) The monolayer LaB8 on a suitable
substrate may well be a platform for studying the exotic
properties of 2D eightfold degenerate fermions.
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