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The polarization singularity in momentum space has recently been discovered as a new class of
topological signatures of Bloch modes in photonic crystal slabs concerning the far-field radiations, beyond
its near-field description with widely explored topological band theory. Bound states in the continuum
(BICs) in photonic crystal slabs are demonstrated as vortex eigenpolarization singularities in momentum
space and the circular polarization points (C points) are also obtained based on BICs, opening up more
possibilities for exotic light scattering and various topological phenomena of singular optics. Here,
focusing on the nondegenerate bands, we report the generation to annihilation of two pairs of C points in
momentum space in the photonic crystal slabs with inversion symmetry but broken up-down mirror
symmetry. Interestingly, as the C points evolve with the structure parameter, we find two merging processes
of C points, where an accidental at-Γ BIC and unidirectional radiative resonances with leaky channels
of drastically different radiative lifetime emerge. The whole evolution is governed by the global charge
conservation and the sum of topological charges equals to zero. Our findings suggest a novel recipe for
dynamic generation and manipulation of various polarization singularities in momentum space and might
shed new light to control the resonant and topological properties of light-matter interactions.
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Polarization is one of the most fundamental properties
of electromagnetic radiations due to its transverse wave
nature. For a monochromatic vectorial electromagnetic
field, its polarization is generally position dependent, and
the field can manifest complex spatial polarization patterns.
One remarkable feature in the overall spatial patterns is the
topological polarization singularity including C points
(circular polarization points), L lines (a curve along which
the polarization is linear), and V points (the vortex center of
polarization fields) [1–9]. Both C points and L lines are
topologically robust and generic in the polarization field,
promising for controlling the directionality [10,11] and
intrinsic properties [12] of quantum dot emissions, while V
points, as the unstable and nongeneric singular points,
also have potential applications such as subwavelength
focusing [13], imaging [14], and trapping [15].
Analogous to polarization vector distributions in real

space, the singular points of polarization can exist in
momentum space [16–23], characterized by the far-field
polarization distribution of eigenmodes in an optical
system. For instance, photonic crystal slabs (PCSs) can
support V points of polarization vector fields in the
momentum space, which is closely related to bound states
in the continuum (BICs) [19–23]. BICs are resonances with
infinite lifetimes although they appear within the continu-
ous leaky radiation spectrum [24–27]. Since far-field
polarizations of eigenmodes at V points are ill-defined,
the radiation loss will vanish at the corresponding specific

momentum points, forming the so-called BICs with infinite
radiative quality factors (Q factor) and significantly
enhanced light-matter interactions [28–32]. Such V points
in momentum space, which are usually characterized by an
integer topological charge, open many new applications in
the creation of optical vortex [33,34] and ultrahigh-Q
guided resonances [35,36].
Different from V points that carry integer topological

charges, C points, a more generic form of polarization
singularity, have half-charge and can also exist in the
far-field polarization vector fields of PCSs [37–45]. The
eigenmodes at C points have finite Q factors and only
couple to circularly polarized radiative waves, which are
directly associated with chiroptical effects [46,47] and
facilitate intriguing applications like routing the valley
exciton emission [48]. Recently, C points are observed
near the band degeneracies and are shown to be related
with the nontrivial Berry phase of bands [42–45]. For the
nondegenerate bands with trivial Berry phase, the gener-
ation and manipulation of half-charged C points are usually
associated with the V points in the up-down mirror
symmetric PCSs, i.e., BICs [37–41]. For example, pair-
wise C points can be created by breaking the symmetry-
protected BICs in PCSs [37–39]; merging two C points,
originally separated from an off-Γ BIC (V point), of
downward radiations can generate unidirectional guided
resonances (UGRs) that only radiate to the upward direc-
tion [40]. However, for various practical applications
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enabled by C points in momentum space, more abundant
and flexible mechanisms to generate and tune C points
should be devised.
In this study, we propose a general and simple approach

of two misaligned stacked dielectric gratings, which shows
a complete evolution process of C points starting from
zero topological charge, including the generation, merging,
and annihilation. Distinct from the fact that the C points
generated from BICs by breaking the in-planeC2 symmetry
have identical charges and opposite handedness [37–41],
two pairs of C points, each of which possesses the same
handedness but opposite topological charges, can be
created and dynamically manipulated via continuously
shifting of the misalignment without breaking the inversion
symmetry of structure. Besides, two merging processes of
half-charged C points with the same topological charges
but different handedness into accidental V points are
observed for the first time. Importantly, owing to the
broken up-down mirror symmetry and the preserved
inversion symmetry of the structure, the high-contrast
directional radiations and accidental perfect BICs are
achieved at these accidental V points. These distinguished
topological polarization evolutions are closely related to the
symmetry of our system, which are also bounded by the
conservation of global topological charge. It is worth
noting that the total topological charges are strictly zero
during the whole process.
Here, the one-dimensional PCSs [49–51] composed by

two superimposed identical high refractive index gratings
(n1 ¼ 3.48) with lattice constant a, width w ¼ 0.461a, and
slab thickness h ¼ 0.32a, in the background medium of
low refractive index (n2 ¼ 1.46), is shown in Fig. 1(a). In
general, such PCSs has broken mirror symmetry with
respect to x-y plane (σz symmetry), when the lateral offset
or misalignment δ exists, but preserves the inversion
symmetry (P symmetry). At the highly symmetric case
when δ ¼ 0, the transverse electric (TE) band structure,
which describes the Bloch modes in PCSs, along the kx axis
is obtained by finite-element simulation methods and
plotted in Fig. 1(b). The modes at the Γ point for the first
(TE1) and second (TE2) bands are symmetry-protected
BICs that carry integer topological charges and to exclude
the influences of them, the following studies focus on the
third band (TE3). Figure 1(c) depicts the electric field
distribution of TE3 mode at Γ point, indicating the
existence of leaky waves. When the misalignment δ is
introduced and varies, a variety of topological polarization
singularities can be generated and fully manipulated by this
misalignment.
To start, we first quantitatively discuss the topological

charge q of polarization singularity supported by PCSs in
momentum space. For a nondegenerate Bloch mode with
an in-plane wave vector kk ¼ ðkx; kyÞ above the light line
and below the diffraction limit, the only propagating wave
compatible with it is the zero-order Fourier component of

Bloch functions and has the same kk [19,24]. To investigate
the topology in kk space, a polarization vector of far-
field radiation projected onto x-y plane is introduced,
dðkkÞ ¼ dxðkkÞx̂þ dyðkkÞŷ. The topological charge q car-
ried by the polarization singularity for dðkkÞ is thus defined
as [19,38]:

q ¼ 1

2π

I
L
dkk · ∇kkϕðkkÞ; ð1Þ

where L is a closed path in the kk space that goes around the
polarization singularity in the counterclockwise direction.
ϕðkkÞ ¼ 1

2
arg½S1ðkkÞ þ iS2ðkkÞ� is the angle between its

long axis of the polarization ellipse and the x axis, and
SiðkkÞ is the Stokes parameter of dðkkÞ (Supplemental
Material [52], Sec. S1). Topological charge q describes
how many times the polarization vector winds along a
closed loop L and has a similar form to the Chern number
defined in bulk bands. Once the polarization vector cannot

0 ( ) 0.1 0.2-0.1-0.2

0.55

0.5

0.45

0.4

0.35

TE1

TE2

TE3

kxa/(2 )

F
re

qu
en

cy
 

a/
(2

c )

 = 0
(a) (b)

Ey (y=0) at kx = 0

1

-1

0

-1

k y
a /

(2
)

kxa/(2 )

 = 0.0674a

1/2

-1/2

k y
a/

(2
)

kxa/(2 )

 = 0.11a

-1

k y
a /

(2
)

kxa/(2 )

 = 0.092a

-1/2
1/2

kxa/(2 )

k y
a/

(2
)

 = 0.036a
(d) (e)

-1/2

-1/2

1/2

1/2

-1/2

-1/2

1/2

1/2

RH-C
LH-C

-1 -1
kxa/(2 )

kya/(2 )

1/2

-1/2

0

0.1

0.2

-0.1

-0.2

-0.06 0.06

1/2

Spawning 
at  = 0.036a

Annihilation 
at  = 0.111a

a

h

w

h

n1

n2

xy

z

(f)

(h)(g)

(c)

1/2

FIG. 1. The evolution of polarization singularities in momen-
tum space supported by one-dimensional photonic crystal slab.
(a) Schematics of a one-dimensional photonic crystal slab
composed of two superimposed identical gratings with a mis-
alignment δ. (b) Calculated TE band structure along the kx axis at
δ ¼ 0. The blue line is the third TE band (TE3) that we focus on.
(c) Mode profile in the unit cell for the TE3 band at Γ point.
(d) Trajectories traced by two pairs of C points with different
topological charges (q ¼ �1=2) in momentum space as δ
increases for downward radiation. The blue and red discs marked
by �1=2 indicate the right-handed and left-handed circular
polarizations with a topological charge of �1=2. (e)–(h) show
the calculated projected polarization vector fields of downward
radiation when δ ¼ 0.036a (e), 0.0674a (f), 0.092a (g), 0.1a (h).
The black discs are the V points with charge q ¼ −1.
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be continuously defined, nonzero topological charges
necessarily emerge, generating polarization singularities
in momentum space. The charge q is half-integer if the loop
L encloses a C point where S1 ¼ S2 ¼ 0 and S3 ¼ �1
[37,38], while q is an integer if a V point is enclosed where
S1 ¼ S2 ¼ S3 ¼ 0 (i.e., the vanished radiation intensity)
[17–23]. Generally, V points represent BICs in the system
with σz symmetry, since, at this point, no radiation channels
are allowed though the mode exists within the light
cone [19–25].
We now show the generation and evolution of various

topological polarization singularities in our system, which
is also discussed in Sec. S2 of Supplemental Material [52]
by utilizing the temporal coupled-mode theory [57–59].
Since our system preserves P symmetry, the projected
polarization vector distribution in downward radiation
(kz < 0) is inverse to that in upward radiation (kz > 0)
(Supplemental Material [52], Sec. S2). Thus, we can
study the half-space radiation to understand our system.
Figure 1(d) shows the evolution of C points in momentum
space with different misalignments for downward radia-
tions. The right-handed and left-handed C points, dubbed
RH-C and LH-C points respectively, are marked as blue
and red lines. At δ ¼ 0.036a, a pair of RH-C points emerge
in the vicinity of kka=ð2πÞ ¼ ð−0.015; 0.185Þ. They have
opposite topological charges (q ¼ �1=2) and can be
further seen from projected polarization vector distribution
in Fig. 1(e), which is represented by the line field tangent to
the long axis of the polarization ellipse. We can explicitly
observe the “star” and “lemon” patterns, further verifying
the existences of C points with −1=2 and 1=2 charges [4].
Since the topological charge is a conserved quantity, it will
only deform and move in momentum space but can-
not suddenly appear or disappear due to the topological
robustness. Therefore, for C points, the destruction
and generation are only possible pairwise: a C point can
only be removed through collision with another C point of
same handedness but opposite charge [37–42], which
accounts for our observed generation of paired C points
with opposite topological charges. Moreover, bounded
by y-mirror symmetry (σy symmetry), another pair of
LH-C points necessarily appear near kka=ð2πÞ ¼
ð−0.015;−0.185Þ (Supplemental Material [52], Sec. S2).
Importantly, our discovered C points are generated from
zero topological charge, distinct from recently reported
C points by breaking an integer-charged V point [37–41],
which points out the fundamental nature and general
existence of C points in momentum space.
More interestingly, as the misalignment δ increases,

these C points can be dynamically tuned and can collapse
in momentum space. At δ ¼ 0.0674a, as seen in Fig. 1(d),
twoC points with opposite handedness and identical charge
q ¼ −1=2 merge at kx axis, kka=ð2πÞ ¼ ð0.0523; 0Þ,
becoming a V point. Figure 1(f) displays the polarization
line field of downward radiation at δ ¼ 0.0674a, where the

V point is marked as the black disc. As mentioned, due to
the preserved P symmetry, the polarization state distribu-
tion of upward radiation is inverse to that of downward
radiation and the V point in upward radiation will appear
at kka=ð2πÞ ¼ ð−0.0523; 0Þ. For better understanding,
we calculate the far-field polarization states in upward
and downward radiation when δ ¼ 0.0674a and plot them
in Fig. 2(a), which obviously suggest the inversion relation-
ship between the polarization state distribution of upward
(top panel) and downward (bottom panel) radiation.
Because the far-field polarization at V points is ill-defined,
the radiation intensity would vanish [19,40] and two UGRs,
which have different radiative channels, are achieved.
Such UGRs are characterized with drastically different
radiative lifetimes for upward and downward radiations,
presenting the unidirectional radiation feature due to the
broken σz symmetry (Supplemental Material [52], Sec. S2).
To verify the UGRs, we calculate the radiative losses
toward the top (γu) and bottom (γd) of the structure and
get an asymmetry ratio, η ¼ γu=γd, for different kk point.
Figure 2(b) depicts that the upward (orange) and downward
(dashed green) radiation losses are almost reduced to 0
at kka=ð2πÞ ¼ ð−0.0523; 0Þ and kka=ð2πÞ ¼ ð0.0523; 0Þ,
respectively, i.e., the position of the two UGRs. They are
also consistent with the extremely bright spots in Fig. 2(c),
which exhibits the asymmetry ratio η in momentum space.
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FIG. 2. The far-field polarization states, radiation losses,
asymmetry ratio, and electric field profiles of eigenmodes.
(a) Far-field polarization states in upward and downward radi-
ation in momentum space for δ ¼ 0.0674a. The blue (red) ellipse
denotes the right (left)-handed elliptic polarizations with different
major axes orientation. The black lines on the kx axis represent
the linear y polarization. (b) Radiation losses from eigenmodes
along the kx axis toward the top γu (orange) and bottom γd
(dashed green) of the structure with δ ¼ 0.0674a. (c) The
asymmetry ratio between upward and downward radiative loss,
η ¼ γu=γd, for δ ¼ 0.0674a. (d) Electric field profiles (y com-
ponent) of the eigenmodes at kka=ð2πÞ ¼ ð0.0523; 0Þ for δ ¼ 0

(top panel) and δ ¼ 0.0674a (bottom panel).
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In addition, from the electric field profiles (y component) at
kka=ð2πÞ ¼ ð0.0523; 0Þ for δ ¼ 0 and δ ¼ 0.0674a shown
in Fig. 2(d), we can clearly observe that the UGR only
radiates upward. The coexistence of these two UGRs at the
obtained V points shows that the radiative channels can
be controlled by the in-plane propagation direction of
lights and could be utilized to increase the efficiencies
of diverse optical devices, such as vertical emitting lasers
and grating couplers.
Further increasing δ leads to the splitting of V points.

As plotted in Fig. 1(d), when δ increases from 0.0674a to
0.092a, two C points with same charge q ¼ −1=2 are
spawned from the V point and moving toward the Γ point,
i.e., kka=ð2πÞ ¼ ð0; 0Þ. At δ ¼ 0.092a, they cross into each
other and act as a V point again at Γ point, which is labeled
in Fig. 1(g). Because the Γ point in momentum space is a
high symmetric point, the negative half-charged C points in
upward radiation as well remerge into a V point at Γ point
for δ ¼ 0.092a. Figures 3(a)–3(c) show the far-field polari-
zation states in upward radiation when δ ¼ 0.0674a, 0.08a,
and 0.092a, respectively, while the counterparts in down-
ward radiation are shown in Figs. 3(d)–3(f). Owing to
the vanished radiation intensities in both upward and
downward leaky channels, the state at Γ point becomes
a perfect BIC, not radiating either upward or downward
(Supplemental Material [52], Sec. S2). To prove the non-
radiative feature of this BIC, we also calculate the radiative
losses γu and γd along the kx axis and the Q factor in
momentum space for δ ¼ 0.092a [Figs. 4(a) and 4(b)]. We
observe that, at Γ point, γu and γd both reduce to 0 and the
Q factor diverges. Furthermore, the modal electric field
profile at the Γ point also shows that there are no outgoing
waves from the mode [Fig. 4(c)]. These results unambig-
uously verify the emergence of BIC, not quasi-BIC [60],
by manipulating the C points in momentum space. It is
worth noting that, although this BIC is at the Γ point, it is an
accidental BIC, which is distinct from the at-Γ BICs

protected by the in-plane rotation symmetry in σz sym-
metric PCSs [25,27].
Meanwhile, as δ increases, the other two C points of

charge q ¼ 1=2 are also moving in momentum space
following the trajectories shown in Fig. 1(d). When
δ ¼ 0.0674a and δ ¼ 0.092a, the RH-C point with
charge q ¼ 1=2 in downward radiation is located at
kka=ð2πÞ ¼ ð−0.057; 0.116Þ and ð − 0.061; 0.082Þ, respec-
tively [Figs. 2(a) and 4(d)]. The positions kka=ð2πÞ of the
LH-C point with charge q ¼ 1=2 are correspondingly equal
to ð−0.057;−0.116Þ and ð − 0.061;−0.082Þ. Increasing δ
from 0.092a, the V point at the Γ point would be destroyed
into two C points with charge q ¼ −1=2 again. Then the C
points with identical handedness but opposite charge move
toward each other. Figure 1(h) exhibits that twoRH-C points
with opposite half-charge in downward radiation meet near
kka=ð2πÞ ¼ ð−0.045; 0.035Þ at δ ¼ 0.11a. Finally, these
two RH-C points are annihilated with each other when δ
reaches 0.111a (for details of the evolution of C points, see
Supplemental Material [52], Sec. S3). For another pair of
LH-C points, the same is true. It is worth pointing out that in
the whole process, the topological charges are consistently
conserved, and the sum equals zero. Furthermore, the whole
process can also occur in the (kk, δ) space of the one-
dimensional PCSs with different parameter configurations
(Supplemental Material [52], Sec. S4).
While C points have been obtained by breaking the BICs

with integer topological charge [37–39] and observed near
non-Hermitian band degeneracies [42–45], our results
show an unprecedented degree of freedom to generate
and manipulate the C points in momentum space, which
could be used to tailor the directionality of quantum dot
emissions and valley exciton emission [48]. In addition, the
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existences of RH-C, LH-C, and linear polarization in
momentum space also mean the full coverage of the
Poincaré sphere, which offers a powerful capability to
modulate polarization of light [61,62]. More importantly,
by merging C points, the highly directional radiations at
two URGs and the highQ factor at BICs are achieved here,
which shows the great flexibility to obtain various polari-
zation singularities in an on-demand manner and these
remarkable features are desired in on-chip optoelectronic
devices such as directional lasing [28,29], grating coupler
[63,64], and other important applications [65].
In conclusion, starting from zero topological charge, we

demonstrated a complete process, from the generation of
two pairs of C points in the momentum space to their
annihilation, in a one-dimensional PCSs with the broken σz
symmetry but the preserved P symmetry. The thorough
process is consistent with the sum of topological charges
being equal to zero, which is distinct from the C points
obtained from BICs. Our findings suggest a generic method
for creating various polarization singularities in momentum
space, such as C points and V points, that offer great
flexibilities of managing the far-field radiations including
their radiative channels, far-field polarization states, and
quality factors of resonances, for various applications.
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