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We present a grain boundary (GB) solute drag model in regular solution alloys. The model accounts for
solute-solute interactions in both the bulk and GBs and captures effects such as monolayer, multilayer, and
asymmetrical segregation. Our analysis shows that deviations from ideal solution thermodynamics play a
paramount role, in which solute drag is shown to scale with solute-solute interaction parameters. Further,
it is found that the asymmetry in GB segregation introduces an additional component to solute drag.
A universal solute drag-GB velocity relation is proposed and used to explain recent experimental
observations of sluggish grain growth in a wide range of engineering alloys.
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Motivation.—Nearly all structural and functional materi-
als are polycrystalline aggregates. They are composed of
crystalline grains that are joined at internal interfaces,
termed grain boundaries (GBs) [1]. It is well accepted that
GB dynamical processes play a pivotal role in controlling
the formation and evolution of microstructure and, as a
result, many crystal-size dependent materials properties,
such as mechanical strength [2,3] and transport [4,5].
Even minute amounts of intended or unintended impurities
at GBs result in profound changes to GB dynamics. The
preferential segregation of elemental species to GBs has
been found to influence materials phenomena, including
diffusion [6], GB cohesion and embrittlement [7], and
activated sintering [8,9]. Of particular interest is the role
that GB solute segregation plays in grain growth, in which
curvature-driven GB migration is expressed using the
following for the normal velocity V of the GB [10]

V ¼ MGBΔP ¼ MGBγGBK: ð1Þ

Here, MGB is the GB mobility and ΔP ¼ γGBK is the
driving force for GBmigration, where γGB is the GB energy
and K is the local interface mean curvature. Two primary
mechanisms contribute to the migration of doped GBs.
The first is thermodynamic, described using the Gibbs
adsorption equation [11,12]. The segregation of an alloying
element to a GB at a given temperature and pressure leads
to the reduction of GB energy and, thus, the driving force
for GB migration. The second effect is kinetic, termed
solute drag. Segregated solutes will attempt to remain
within the GB and, as a result, the migrating GB has to
drag solute atoms, creating a drag force [13,14]. Indeed,
recent experimental studies have demonstrated GB solute
segregation as a mechanism to mitigate grain coarsening in
a wide range of nanocrystalline alloys [15–20]. However,
much of our current understanding has been focused on the

thermodynamic aspect of GB segregation, and the role of
solute drag remains poorly understood. This, in part, is due
to the fact that existing solute drag treatments employ several
restrictive assumptions severely limiting their ability to
quantitatively predict the impact of solute drag on GB
migration. Existing solute drag treatments employ ideal
and dilute alloy thermodynamics [13] or do not account
for solute-solute interactions within GBs [21,22]. However,
recent studies revealed heavily doped GBs with solute levels
that are too high to be considered ideal [17,18,23–25]. Such
studies highlight the need to account for GB solute-solute
interactions, which can be attractive or repulsive, and are,
in principle, different from those in the bulk grains. For
example, atomistic simulations of the free energy of a
Σ5ð310Þ GB in a model Cu-Ag system revealed repulsive
GB solute-solute interactions over some range of Ag
concentrations [26]. Very recently, a discrete model of
GB phase transformations and segregation has been pro-
posed and used to demonstrate the impact of GB phases on
boundary mobility [27]. In addition, the aforementioned
solute drag treatments assume monolayer and symmetric
segregation profiles; an assumption that is only valid for a
small subset of GBs. Multilayer segregation has been
experimentally observed in a wide range of metallic alloys
[28,29]. Xie et al. [30] revealed asymmetrical solute
segregation to tilt GBs in a Mg-based alloy. The goal of
this Letter, therefore, is to present a GB solute drag model in
regular solution alloys that accounts for solute-solute inter-
actions in both bulk and GBs and captures effects such as
multilayer and asymmetrical segregation.
Model.—In this Letter, we consider a one-dimensional

bicrystal system with semi-infinite grains, where the first
grain extends in the region x ∈ ð−∞;−δÞ, and the second
one is defined over x ∈ ðþδ;þ∞Þ, resulting in a GB width
of 2δ. The starting point of our treatment is the introduction
of a spatially varying indicator function ϒðxÞ used to locate
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the GB region and define solute-GB interactions. ϒ ¼ 0 in
the bulk grains and peaks to a value of one within the GB
region. Two canonical functional forms for ϒ are explored
in this Letter, representing a wide range of possible GB
segregation profiles. The first is a smoothed boxcar
function, which results in a GB with multilayer segregation,
and the second is a skew-normal (sn) function used to
account for asymmetrical GB segregation. The functional
forms for ϒðxÞ are given by

ϒ ¼
8<
:

1
2
½tanhðxþϵ

ρ Þ − tanhðx−ϵρ Þ�; boxcar

2β
ω ϕðx−ξω ÞΦ(αðx−ξω Þ); skew normal;

ð2Þ

where ðϵ; ρÞ ¼ ð0.8δ; 0.1δÞ are the boxcar function
parameters used to define ϒ over the GB width 2δ.
For the skew-normal function, ϕðxÞ ¼ exp½−x2=2�= ffiffiffiffiffiffi

2π
p

,
ΦðxÞ ¼ ½1þ erfðx= ffiffiffi

2
p Þ�=2, and ξ, ω, and α are parameters

controlling its mean, variance, and skewness γsn [31].
Here, we note that α ¼ 0 reduces to the standard
Gaussian. Letting η¼ð ffiffiffiffiffiffiffiffi

2=π
p Þα=

ffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

p
, γsn¼ð4−πÞη3=

½2ð1−η2Þ3=2� [31], and we set β ¼ ðω=2Þ=maxðϕΦÞ, so ϒ
peaks at one within the GB region. In this study, we explore
three cases for the skew-normal ϒ function: a symmetric
Gaussian with ðξ;ω; αÞ ¼ ð0; δ= ffiffiffi

8
p

; 0Þ and left- and right-
skewed functions with ðξ;ω; αÞ ¼ ð�0.81δ; 0.58δ;∓ 10Þ.
Figure 1 shows a schematic representation of the four ϒ
functions used in this work. The Gaussian and boxcar
functions represent symmetric monolayer and multilayer
segregation, respectively, whereas the left-skewed (right-
skewed) function accounts for strong segregation on
the leading (trailing) end of the migrating GB [traveling
left to right according to Fig. 1]. Next, we use a solute
concentration field cðx; tÞ to describe bulk fbðc; TÞ and
GB fGBðc; TÞ free energies, where T is the absolute

temperature. To account for solute-solute interactions
within both the bulk and GB regions, we employ regular
solution thermodynamics for the functional form of the free
energy, which is given by [32]

fi ¼ GB
i cþGA

i ð1 − cÞ þ kBT½c lnðcÞ þ ð1 − cÞ ln ð1 − cÞ�
þΩicð1 − cÞ; i ¼ GB; b; ð3Þ

where GAðGBÞ describes the free energy of pure solvent
A (solute B) and kB is Boltzmann constant. Ωb and ΩGB
are the regular solution, or heat of mixing, model
parameters for the bulk grains and GBs, respectively.
The total free energy of the system is written as
ftot ¼ ϒfGB þ ð1 − ϒÞfb, where ϒ is used to interpolate
the free energy between the bulk grains and GBs. The
resultant chemical potential μ ¼ μB − μA ¼ ∂ftot=∂c is
then given by

μ ¼ GB
b −GA

b þ kBT ln

�
c

1 − c

�
þ Ωbð1 − 2cÞ

− ðG� þ 2Ω�cÞϒ; ð4Þ

where Ω� ¼ΩGB−Ωb and G� ¼ΔGA−ΔGB−Ω�. ΔGA ¼
GA

GB −GA
b ∝ γAGBAGB and ΔGB ¼ GB

GB −GB
b ∝ γBGBAGB,

where γAGBðγBGBÞ is the GB energy of pure AðBÞ and AGB

is the GB area. Ω� describes the deviation of the GB heat of
mixing parameter from the bulk one, where Ω� < 0
corresponds to immiscible alloys (i.e., Ωb > 0) and/or ones
with GBs that act as preferential sites for A-B mixing (i.e.,
ΩGB < 0). A close examination of Eq. (4) reveals that the
coupling between the migrating GB and concentration field
is described by a concentration-dependent interaction
energy E ¼ −½G� þ 2Ω�cðxÞ�ϒðxÞ, in contrast to existing
solute drag treatments, which assume a concentration-
independent interaction energy [13,21]. Next, gradients
in the chemical potential result in a mass flux given by
j ¼ −½Dcð1 − cÞ=kBT�∂μ=∂x, where cð1 − cÞ=kBT arises
from the thermodynamic factor [33]. D is the solute
diffusion in the direction of the migrating GB and is
expressed as DðxÞ ¼ DoϒðxÞ, where Do is a reference
GB diffusivity. The steady state solute transport equation
expressed in a frame moving with the GB at a constant
velocity V is given by

∂
∂x

�
Doϒcð1 − cÞ

kBT
∂μ
∂x

�
þ V

∂c
∂x ¼ 0: ð5Þ

Using the GB half-width δ and thermal energy of the
system kBT as reference length and energy scales, respec-
tively, the above transport equation can be made non-
dimensional by letting x̄ ¼ x=δ, μ̄ ¼ μ=kBT, Ē ¼ E=kBT,
Ω̄� ¼ Ω�=kBT, Ḡ� ¼ G�=kBT, and Ω̄b ¼ Ωb=kBT leading
to V̄ ¼ Vδ=Do, which defines the GB Péclet number. By
integrating Eq. (5) once using the far-field boundary

δδ- 0
0

1

G
ra

in
 1

G
ra

in
 2

( 
)

Migrating GB

GB width

FIG. 1. The four ϒ functions used to describe GB-solute
interactions. The Gaussian (green), smoothed boxcar (black),
left-(blue), and right-skewed (red) functions.
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condition c→c∞ as x→−∞, we obtain ϒcð1−cÞ∂μ̄=∂x̄¼
−V̄ðc−c∞Þ, which, upon using Eq. (4), yields the follow-
ing governing equation for the concentration field:

∂c
∂x̄ ¼ g1c3 þ g2c2 þ g3cþ V̄c∞

g4ðc2 − cÞ þ g5
; ð6Þ

where g1 ¼ −2Ω̄�ϒϒ0, g2 ¼ ð2Ω̄� − Ḡ�Þϒϒ0, g3 ¼
Ḡ�ϒϒ0 − V̄, g4 ¼ 2ϒðΩ̄�ϒþ Ω̄bÞ, and g5 ¼ ϒ. Here,
ð� � �Þ0 ¼ dð� � �Þ=dx̄. Next, the solute drag pressure Pd that
the migrating GB experiences can be expressed in non-
dimensional form P̄d as [13]

P̄d ¼
Pdva
kBT

¼ −
Z

∞

−∞
ðc − c∞Þ

dĒ
dx̄

dx̄; ð7Þ

where va is the atomic volume. Equation (6) was solved
numerically [34–36], where we simulated the concentration
fields for all four ϒ functions employed in this Letter and
using a far-field bulk concentration c∞ ¼ 0.05, 0.1, and
0.2. Further, we used V̄ ∈ ½0; 100�, Ω̄GB ∈ ½−8.25; 0�,
and Ω̄b ∈ ½0.75; 1.75� in steps of 0.1, 0.25, 0.25, respec-
tively. Once the concentration fields were obtained, Eq. (7)
was numerically integrated to obtain solute drag P̄d as a
function of V̄ and Ω̄�.
Results.—The goal of this Letter is to explore GB

segregation and solute drag in binary metallic alloys that
are representative of experimentally observed ones, i.e.,
immiscible alloys with large solute concentration levels
[17,18,24]. As a demonstration, we explore an alloy with
c∞ ¼ 0.1, and we let Ḡ� ¼ −Ω̄�, indicating that the GB
energy in pure A is comparable in magnitude to the one in
pure B. Figure 2 shows a plot of concentration profiles for
the four ϒ functions used in this Letter for V̄ ¼ 0, 4, and 12

and using ðḠ�; Ω̄�; Ω̄bÞ ¼ ð5.75;−5.75; 0.75Þ. For station-
ary GBs, our concentration profiles reproduce the exact
solution to Eq. (5) with V̄ ¼ 0 [34]. It can be seen that the
form of ϒ influences both the concentration profile within
the GB region and the depleted zone ahead of the migrating
GB. It is also interesting to note that the functional form
of ϒ serves to break the symmetry in the concentration
profiles. This can be seen in the cases with the left- and
right-skewed ϒ functions at V̄ ¼ 0, where the concentra-
tion is asymmetric across the GB. V̄ plays a similar role, in
which increasing V̄ breaks the symmetry in concentration
profiles as in the cases with the symmetric boxcar and
Gaussian functions in Fig. 2. Further, while the left- and
right-skewed ϒ functions used in this Letter have the same
structure except for a mirror reflection about x ¼ 0, they
exhibit drastically different concentration profiles across
the migrating GB. For the case with the right-skewed
function, solutes segregate to the trailing end of the
migrating GB and, thus, a high level of solutes is main-
tained within the GB region. In contrast, the system with
the left-skewed function shows that solutes segregate to
the leading end of the migrating GB and, as a result, the
GB experiences a large drop in solute concentration with
increasing V̄. Next, we explore the resultant GB solute drag
pressure, where Fig. 3(a) shows surface plots of solute drag

FIG. 2. Solute concentration profiles across the GB for V̄ ¼ 0,
4, and 12 for the four ϒ functions used in this work. Here, we
set ðc∞; Ω̄b; Ω̄�; Ḡ�Þ ¼ ð0.1; 0.75;−5.75; 5.75Þ.

(b)

0.0

0.4

0.8

1.2

0 4 8 0 4 8 0 4 8 0 4 8

(a)

FIG. 3. For the four ϒ functions used in this work: (a) A surface
plot depicting solute drag P̄d as a function of Ω̄� and V̄. (b) Slices
of the P̄d surface for various Ω̄� values depicting the shift in the
maximum solute drag to larger V̄ with decreasing Ω̄�. In both
panels, ðc∞; Ω̄bÞ ¼ ð0.1; 0.75Þ.
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P̄d as a function of Ω̄� and V̄ using ðc∞; Ω̄b; Ḡ�Þ ¼
ð0.1; 0.75;−Ω̄�Þ. It can be seen that solute drag increases
rapidly with decreasing Ω̄�. Again, Ω̄� < 0 represents
immiscible alloys and/or systems with GBs that favor
A-B mixing. Indeed, the trends depicted in Fig. 3(a) are
consistent with experimental observations, in which stag-
nant grain growth was observed in a wide range of
immiscible alloys [17,18,24]. An interesting effect emerges
in regular solution alloys, which deals with the location of
the peak point in solute drag–velocity curves. Figure 3(b)
shows slices of the P̄d surface as a function of V̄ for various
values of Ω̄�, where it can be seen that decreasing Ω̄� shifts
the peak point in solute drag to larger V̄ values, thus,
extending the regime where solute drag is effective in
mitigating GB migration. A closer examination of Fig. 3
suggests a self-similar behavior of solute drag, in which P̄d
can be cast in a functional form as

P̄d

P̄� ¼ GrefðV̄=V̄�Þ; ð8Þ

where P̄� ¼ P̄�ðΩ̄�Þ encompasses the role of bulk and GB
heat of mixing in the maximum value of solute drag, and
Gref is a reference function of the rescaled V̄=V̄�, describing
the structure of the solute drag–velocity curve. V̄� ¼
V̄�ðΩ̄GB; Ω̄bÞ is a characteristic velocity at the maximum
drag pressure. For all simulated cases in this work, solute
drag–velocity curves are rescaled by their respective P̄�

and V̄� values at the maximum point, and the results are
shown in shaded gray lines in Fig. 4(a) for systems with
c∞ ¼ 0.05, 0.1, and 0.2. The collapsed solute drag-velocity
curves reveal a Gref function that can be well fitted using

Gref ¼
1

ð V̄V̄�Þ
exp

�
λ2 − ( lnð V̄V̄�Þ − λ)2

2λ

�
;

V̄
V̄� > 0; ð9Þ

where λ ¼ 2.3� 0.09 is a fitting parameter. Figure 4(a)
depicts a plot ofGref [Eq. (9)] for the alloys with c∞ ¼ 0.05
(red circles), 0.1 (solid black line), and 0.2 (green trian-
gles), demonstrating that Eq. (9) provides a robust fit to all
solute drag profiles. Figures 4(b)–4(c) show, respectively, a
plot of P̄� and V̄� for the alloy with c∞ ¼ 0.1, where it can
be seen that the maximum solute drag P̄� scales with Ω̄�
(i.e., P̄� ∝ Ω̄�) for all ϒ functions explored in this Letter.
This behavior can be understood by substituting the
expression for Ē in Eq. (7) to yield [34]

P̄d ¼ Ḡ�

Z
∞

−∞
ðc − c∞Þϒ0dx̄ − Ω̄�

Z
∞

−∞
ðc2Þ0ϒdx̄; ð10Þ

where it is evident that P̄d scales with Ω̄� as in the case with
Ḡ� ¼ −Ω̄� depicted in Fig. 4(b). It is interesting to note
that the first integral on the right-hand side of Eq. (10)
corresponds to the solute drag predicted by Cahn [13] for

ideal and dilute alloys. However, an additional contribution
to solute drag, given by the second integral on the right-
hand side of Eq. (10), emerges in regular solution alloys,
which depends on the structure of the ϒ function rather
than its spatial gradient. This indicates that asymmetric ϒ
profiles introduce an additional component to solute drag
that scales with Ω̄�. This can be seen in Fig. 4(b), where
solute drag in systems with the skewed ϒ functions differs
from the one with symmetric Gaussian ϒ profile, and that
this difference grows with decreasing Ω̄� values. Next,
Fig. 4(c) shows a plot of V̄� as a function of the heat of
mixing model parameters for the alloy with c∞ ¼ 0.1. An
interesting effect can be seen in which the location of
maximum solute drag shifts to larger velocities according
to V̄� ∝ ðΩ̄� þ Ω̄bÞ ¼ Ω̄GB. This is an indication that
negative GB heat of mixing Ω̄GB plays a stabilizing role
in which decreasing Ω̄GB shifts the maximum solute drag
to large velocities, thus, expanding the stability region
(i.e., drag increases with GB velocity) due to solute drag.
Finally, we compare our solute drag values with the
intrinsic driving force for curvature-driven GB migration
ΔP ¼ γGBK in some of the recently observed thermally
stable nanocrystalline alloys. Using γGB ¼ 1 J=m2, operat-
ing temperature of T ¼ 800 − 1000 K, atomic volume
va ¼ 1.0–3.0 Å3, and assuming a grain size in the range
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FIG. 4. (a) A plot of the proposed form for Gref [Eq. (9)] along
with the collapsed solute drag-velocity curves (gray lines) for alloys
with c∞ ¼ 0.05, 0.1, and 0.2 and using the four ϒ functions
employed in this work. Using Eq. (8), a plot of (b) P̄� ¼ P̄�ðΩ̄�Þ,
and (c) V̄� ¼ V̄�ðΩ̄GB; Ω̄bÞ for the alloy with c∞ ¼ 0.1 for various
values of the bulk heat of mixing Ω̄b.
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of 50–100 nm resulting in mean curvatures K≈
4–8 × 107 m−1, the nondimensional driving force for GB
migration is ΔP̄ ¼ ΔPva=kBT ≈ 0.003–0.02, which falls
well within the maximum solute drag values P̄� shown in
Fig. 4(b).
Conclusions.—In this Letter, we presented a solute drag

model in regular solution alloys that accounts, at a meso-
scopic scale, for monolayer, multilayer, and asymmetrical
segregation. One conclusion from our Letter is that the
spatial details of GB-solute interactions play a critical role
in the magnitude of solute drag, with the case of multilayer
segregation resulting in the largest solute drag. The
maximum solute drag was found to scale with Ω̄�, which
describes the deviation in the GB heat of mixing from that
of the bulk grains. It was also found that the peak points in
solute drag-velocity curves shift to larger GB velocities
with decreasing Ω̄�, i.e., attractive (repulsive) solute-solute
interactions within the GB (bulk). This Letter motivates
further explorations of GB solute drag effects in engineer-
ing alloys.
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