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Noise and disorder are known, in certain circumstances and for certain systems, to improve the level of
coherence over that of the noise-free system. Examples include cases in which disorder enhances response
to periodic signals, and those where it suppresses chaotic behavior. We report a new type of disorder-
enhancing mechanism, observed in a model that describes the dynamics of external cavity-coupled
semiconductor laser arrays, where disorder of one type mitigates (and overcomes) the desynchronization
effects due to a different disorder source. Here, we demonstrate stabilization of dynamical states due to
frequency locking and subsequently frequency locking-induced phase locking. We have reduced the
equations to a potential model that illustrates the mechanism behind the misalignment-induced frequency
and phase synchronization.
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Synchronization in networks of nonlinear elements,
including semiconductor diodes, has been studied, revealing
a variety of spatial and temporal behaviors [1–22]. The
equations describing the dynamics of semiconductor diodes
and diode arrays have been experimentally verified and
extensively tested [3,23–29]. Nearest neighbor coupled semi-
conductor lasers can be phase synchronized [24–26]; how-
ever, for large arrays, the in-phase solution destabilizes, and
spatiotemporal chaos may occur. This destabilization occurs
because as coupling strength increases, thenumber of external
cavitymodes increases and the coupled lasers chaotically hop
between these fixed-frequency solutions [3,27,29].
Although noise and/or spatial disorder typically are

expected to reduce coherent behavior, under certain circum-
stances they can improve it [30–45]. In one widely studied
class, known as stochastic resonance, dynamical noise
enables the influence of a weak periodic force [30,31]. It
has been recently suggested that uncorrelated noise can
promote rather than inhibit coherence in natural systems and
that the same effect can be harnessed in engineered systems
[32]. Alternatively, quenched disorder can suppress or
eliminate large deterministic fluctuations of a chaotic system
to yield synchronized behavior [33–41]. Coupled dynamical
systems with highly heterogeneous time delays or other
system parameters have also been studied [22,46–48].
In this Letter, we identify a new mechanism in single-

mode semiconductor lasers whereby the addition of disorder
enhances system-wide coherence. We find that one type of
disorder mitigates array desynchronization shaped by a
different type of disorder and generates a highly ordered
dynamical state. While the nature of disorder-enhanced

synchronized states could vary both temporally (i.e., fixed
point solutions, limit cycles, quasiperiodic solutions, etc.)
and spatially (external cavity modes, in-phase solutions,
etc.), we focus our attention on states that lead to the high
degree of frequency and phase locking important for a
variety of applications. We demonstrate a disorder-driven
mechanism by which frequency and frequency-induced
phase locking is achieved.
We begin with a version of the Lang-Kobayashi equa-

tions that has gain saturation nonlinearity and amplitude-
phase coupling. We describe the ith laser field EiðtÞ ¼
riðtÞeiϕiðtÞ and carrier number NiðtÞ in an array of M lasers
[49–54]:

_EiðtÞ ¼
1þ iα
2

�
g
NiðtÞ−N0

1þ sjEiðtÞj2
− γ

�
EiðtÞ þ iσωiEiðtÞ

þ κf

M

XM
j¼1

KijEjðt− τþ ετijÞ þFEi
;

_NiðtÞ ¼ J0 − γnNiðtÞ− g
NiðtÞ−N0

1þ sjEiðtÞj2
jEiðtÞj2 þFNi

: ð1Þ

Here, N0 ¼ 1.5 × 108 is the number of carriers at trans-
parency, g ¼ 1.5 × 10−8 ps−1 and s ¼ 2 × 10−7 are the
differential gain coefficient and the gain saturation coef-
ficient, respectively [50,51], γ ¼ 0.5 ps−1 is the cavity loss,
α ¼ 5 is the linewidth enhancement factor [52,53], γn ¼
0.5 ns−1 is the carrier loss rate, J0 ¼ aγn½N0 − ðγ=gÞ� is the
pump current, κf is the feedback strength, FE are complex
Gaussian noise, hFEi

ðtÞ;F�
Ej
ðt0Þi¼Rspδijδðt−t0Þ, andFN are
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real Gaussian noises, hFNi
ðtÞ;FNj

ðt0Þi¼γnNiðtÞδijδðt−t0Þ
[54,55]. The frequency detuning of the ith laser is σωi where
ωi is a random fixed real number distributed with zero mean
and 2π variance, and σ represents the variance of the
detuning with units ns−1. For simulations, we use a fourth
order Adams-Bashforth-Moulton stochastic integration
method [56]. We note that the effects discussed in this
Letter occur without noise, however we include the noise
term to illustrate that the phenomenon is robust.
The delay time between the i and j lasers has an offset

ετij ¼ εðηi þ ηjÞ, the vector η is a random vector of time
delays drawn from a positive half-normal distribution with
zero mode, variance ½1 − ð2=πÞ�, εηi, and εηjare positive
(and hence τij is positive). The value of time delay
(τ ¼ 3 ns) is large enough not to consider multiple reflec-
tions from the misaligned facets [57,58]. The parameter ε is
related to the variance of the delay misalignment and has
units of ns. Here, we note that typically a phase factor
proportional to the time delay and carrier frequency eiω0ετij

multiplies the feedback term. For a typical diode laser, the
period is ð2π=ω0Þ ∼ 10−6 ns, whereas the misalignment of
the ith laser is εηi ∼ 10−1 ns, consequently, the misalign-
ment parameters can be slightly adjusted by less than a
wavelength to negate the phase shift without significantly
changing the delay time misalignment. Therefore, we
assume that εηi is an integer multiple of ð2π=ω0Þ. We
note that disorder does not have to be random: engineered
or random engineered disorder can lead to very similar
outcomes promoting synchrony in the system. We therefore
do not include the phase factor. We have numerically
confirmed in several examples that adding eiω0ετij to the
feedback term does not change the main results of our
Letter and will only make the mathematical description of
the underlying mechanism more complicated.
We consider the decayed nonlocal coupling matrix K

whose ij element is Kij ¼ dji−jjx , where dx ∈ ð0; 1Þ. In the
case of a two-dimensional array, the matrix element
coupling the ik laser with the jl laser is Kij;kl ¼
dji−jjx djk−ljy , where dx; dy ∈ ð0; 1Þ. This matrix corresponds
in principle to many external cavity designs because the
mode structure is similar to that of a resonator with “good”
properties [14,21,59,60].
In an array of identical lasers (σ ¼ 0) coupled with

decayed nonlocal couplingK and no misalignment (ε ¼ 0),
phase locking occurs as a form of array-wide transverse
mode selection, where the dynamics of the mode selected
by the array are similar to the dynamics of a single laser
with an effective feedback constant κ0 ¼ ðκf=MÞλ1 where
λ1 is the largest eigenvalue ofK [61,62]. This phase locked
state is robust to small amounts of frequency detuning and
the phase locking persists even in chaotic parameter ranges
[61]. However, when detuning becomes too large, the lasers
begin to desynchronize. If a laser in the array has a
frequency σωi that is far from the central frequency

ð1=MÞPj σωj, then it becomes unlikely for the laser to
participate in the phase-locked state.
Even when natural frequencies of individual lasers are

far enough apart to cause desynchronization, we find that
the introduction of facet misalignment causes all lasers to
converge perfectly to a single frequency. In Fig. 1 we show
cosðϕiÞ for a 10 × 10 diode laser array without and with
facet misalignment, and corresponding power spectra. We
have tested different size arrays, one dimensional and two
dimensional, and confirmed that the results in Fig. 1 are
typical for different sizes and parameters.
We observe that with ε ¼ 0 the power spectrum of all

lasers is broad, indicating chaotic behavior. Further, detun-
ing is large enough that average phase synchronization
hSi ¼ hjPM

i¼1 EiðtÞj2=½M
P

M
i¼1 jEiðtÞj2�i is low. With facet

misalignment, phase synchronization improves to almost
perfect phase synchrony and all lasers lock to a single
frequency. We have tested disorder-enhanced frequency
locking for 100 different misalignment disorder realizations
and random-phase, zero-amplitude initial conditions and
find very similar results.
It is well known that for a single laser, the Lang-

Kobayashi equations’ solution space is determined by
the stability properties of the external cavity mode solutions

]63–68 ]. Each solution is a fixed-frequency fixed-intensity
solution. As feedback strength to a laser is increased, the
number of ECMs increases [64]. It has been shown [61,62]
that a coupled array (without misalignments) can syn-
chronize on a collective mode and undergo the same
feedback-induced bifurcation cascade as a single laser.
For weak to moderate feedback, this synchrony is stable.

FIG. 1. (a),(c) cosϕi (blue is−1 and yellow isþ1) as a function
of time (x axis) and laser number (y axis) for a two-dimensional
array of M ¼ 100 lasers with dx ¼ dy ¼ 0.95 and κf ¼ 30 ns−1.
(b),(d) The corresponding power spectra. The lasers are detuned
with variance of σ ¼ 3 GHz. For the top figures, the facets are
perfectly aligned ε ¼ 0, and for the bottom figures, the facet is
misaligned so that ε ¼ 0.1.
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However, for sufficiently large feedback strength that is
required to phase lock moderately frequency-detuned
arrays, the chaotic behavior destabilizes synchrony
[61,62]. In this strong feedback regime, “attractor hopping”
takes place where the frequencies of the individ-
ual lasers slowly hop between the ECM frequencies
[61,62,64,69,70]. The power spectrum for ε ¼ 0 in
Fig. 1(b) indicates chaotic behavior with many frequencies,
in contrast to a single dominant frequency for ε ≠ 0 seen in
Fig. 1(d). The presence of misalignment destabilizes all but
a single fundamental frequency for the system, even though
each laser has a detuned central frequency.
We begin by changing Eq. (1) to polar coordinates

such that EiðtÞ ¼ riðtÞeiϕiðtÞ and use GðNi; riÞ ¼
g½ðNi − N0Þ=ð1þ sr2i Þ� − γ. Since J0 is much higher than
threshold, all the ECM solutions that we consider are within
the gain bandwidth for the system, so we will not need to
use the carrier number equation for this analysis. We now
consider dynamics on the timescale of the ECM frequen-
cies. In diode lasers ECM frequencies are much lower than
relaxation oscillation frequencies [64,69–71]. Therefore,
in our derivation the effects of carrier dynamics will be
effectively treated as fluctuations about ECM solutions. We
also assume constant (or fluctuating around constant) value
for field amplitudes ri: These assumptions are further
justified in Supplemental Material, Sec. S1 [72].
Equations (1) reduce to

0 ¼ 1

2
Gþ κf

M

X
j

Kij cos½ϕjðt − τ þ ετijÞ − ϕi�

þ 1

r
ℜðFEi

e−iϕiÞ;

_ϕi ¼
α

2
Gþ σωi þ

κf

M

X
j

Kij sin½ϕjðt − τ þ ετijÞ − ϕi�

þ 1

r
ℑðFEi

e−iϕiÞ: ð2Þ

Combining these, we arrive at a time-delayed phase
equation with added noise similar to that in [73]:

_ϕi ¼ σωi þ
κf

M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

×
X
j

Kij sin½ϕjðt − τ þ ετijÞ − ϕi − tan−1ðαÞ�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r
jFEi

j sin½argðFEi
Þ − ϕi − tan−1ðαÞ�: ð3Þ

We simplify the noise term as

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r
jFEi

j sin½argðFEi
Þ� →

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r
Fϕi

;

where Fϕ;i is real Gaussian white noise: hFϕi
ðtÞ; Fϕj

ðt0Þi ¼
ðRsp=2Þδijδðt − t0Þ. We then rewrite Eq. (3) as

_ϕi ¼ σωi þ
κf

M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

×
X
j

Kij sin½ϕjðt − τ þ ετijÞ − ϕi − tan−1ðαÞ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r
Fϕi

: ð4Þ

Wecan now consider fluctuations of the central frequency
of each laser, rather than the phase. This treatment is similar
to that in [69,74]. We assume, as in the simulation, that the
individual laser frequencies vary on a timescale longer than
τ. Then the frequency of ith laser can be approximated by
ΩiðtÞ ≈ ½ϕiðtÞ − ϕiðt − τÞ�=τ and the evolution ofΩi can be
written as _Ωi ¼ ½ _ϕiðtÞ − _ϕiðt − τÞ�=τ:

_Ωi ¼
σωi

τ
þ κf

Mτ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

×
X
j

Kij sin½ϕjðt − τ þ ετijÞ − ϕi − tan−1ðαÞ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r

Fϕi

τ
− _ϕiðt − τÞ

τ
: ð5Þ

The timescale of variation of the frequency Ωi is much
larger than τ. We then approximate the instantaneous
frequency _ϕiðt − τÞ, assuming it resides on a single
frequency during a delay interval (which is substantiated
by our numerical experiments in this parameter range) [74]:

_ϕiðt − τÞ ≈ ϕiðtÞ − ϕiðt − τÞ
τ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r
Fϕi

ðt − τÞ

¼ Ωi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r
Fϕi

ðt − τÞ: ð6Þ
According to the simulations presented here and the

results of [61,62], the steady state solutions of the array
in the case of small σ and ε ¼ 0 are similar to the
ECM solutions for a single laser, which satisfy Ω ¼
ωþ κf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
sin½−Ωτ − arctanðαÞ�. For an array of

lasers, the array solutions are similarly ECM solutions of
a single laser with a modified effective coupling [61,62].
We therefore approximate the feedback term in the
case of ε ¼ 0 using sin½ϕjðt − τÞ − ϕiðtÞ − tan−1ðαÞ�≈
sin½−Ωiτ − tan−1ðαÞ�:

sin½ϕjðt − τ þ ετijÞ − ϕiðtÞ − tan−1α�
≈ sinðϕτ

j − ϕi − tan−1αÞ
þ ετij _ϕ

τ
j cosðϕτ

j − ϕi − tan−1αÞ; ð7Þ

sinðϕτ
j − ϕi − tan−1αÞ þ ετij _ϕ

τ
j cosðϕτ

j − ϕi − tan−1αÞ
≈ sinð−Ωiτ − tan−1αÞ þ ετijðΩj − ΩiÞ: ð8Þ

The first approximation in (7) is simply a first-order
expansion. We make the stronger approximation (8) as an
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ansatz. This stronger approximation seems to work for the
set of parameters and system considered in this Letter and
has been numerically verified (see Supplemental Material,
Sec. S2 [72]).
We then arrive at the expression

_Ωi ¼
1

τ
ðσωi − ΩiÞ

þ κf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

Mτ

XM
j¼1

Kij sin½−Ωiτ − tan−1ðαÞ�

þ εκf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

Mτ

XM
j¼1

KijτijðΩj − ΩiÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

r

Fϕi
ðtÞ − Fϕi

ðt − τÞ
τ

: ð9Þ

Since the noise sources Fϕi
ðtÞ and Fϕi

ðt − τÞ are
uncorrelated, we can replace their sum with FΩi

ðtÞ having
magnified diffusion coefficient 2Rspð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p
=rÞ (which is

four times that of Fϕi
) [74]. The fully reduced system is

_Ωi ¼
1

τ
ðσωi − ΩiÞ

þ κf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

Mτ

X
j

Kijfsin½−Ωiτ − tan−1ðαÞ�

þ ετijðΩj − ΩiÞg þ FΩi
ðtÞ: ð10Þ

When ε ¼ 0, the Ωi are essentially uncoupled. This does
not imply that the actual laser dynamics is uncoupled.
For ε ¼ 0 the only frequency-locking mechanism could be
related to the coupling matrix term

P
j Kij that would

be almost equal for large arrays. This coupling term may be
too small to overcome the random detuning, leading to poor
frequency—and thus phase—locking. Equation (10) shows
that misalignment affects coupling and as demonstrated in
Fig. 1, can induce frequency locking.
To gain further insight into this mechanism, we recast

Eq. (10) as a potential system:

_Ωi ¼ −∂VðΩ⃗Þ
∂Ωi

þ FΩi
ðtÞ;

VðΩ⃗Þ ¼ − 1

2τ

XM
i¼1

ðσωi − ΩiÞ2

− κf
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

Mτ2
XM
i¼1

XM
j¼1

Kij cosðΩiτ þ tan−1αÞ

− ε
κf

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p

Mτ

XM
i¼1

XM
j¼1

KijτijðΩj − ΩiÞ2: ð11Þ

There are three components to the potential function (see
Fig. 2). The first term, which includes the detuning, leads to
a parabolic potential with a minimum (for an individual
laser) at σωi so that the potential minima of two detuned
lasers are pulled apart, as illustrated in Fig. 2(a). The second
term of the potential can be thought of as an ECM
contribution. The increase in the number of ECM solutions

(a) (b)

FIG. 2. Diagrams of the effective potential functions of two
detuned lasers’ delay coordinates for ε ¼ 0 (a) and ε ≠ 0 (b). The
solid lines denote the potentials for a very small value of κf and
the dash-dotted lines denote the potentials for increased κf.

FIG. 3. (Left panel) Values of Ωi are plotted for each laser for a potential model [Eq. (11)] simulation of an array of ten detuned lasers
(σ ¼ 3 GHz) with dx ¼ 0.8. (Right panel) Phase delay ½ϕðtÞ − ϕðt − τÞ�=2π is plotted for each laser in an array of ten lasers. This plot is
generated from a single simulation with ten detuned lasers (σ ¼ 3 GHz) with dx ¼ 0.8 and slowly increasing ε. The same realizations of
τij and ωi are used for each simulation. The coupling strength is κf ¼ 30 ns−1. For both figures color represents laser number.
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increases the number of local minima. The third term,
proportional to ε, generates a “springlike force” [Fig. 2(b)]:
misalignment (ε ≠ 0) effectively forces the frequencies of
lasers toward one another. The presence of sufficiently
large κf makes it possible for two lasers’ delay coordinates
to settle into local minima that have nearly equal frequency;
however, it is nonzero ε that induces exact frequency
alignment.
We illustrate the behavior of the potentialmodel [Eq. (11)]

in Fig. 3 (left panel), where approximate steady-state values
ofΩi are plotted as a function of ε. The data are from a single
simulation that starts with ε ¼ 0, increasing ε by 0.001 ns
every 400 time units. It is clear from the figure that as ε
increases, the frequencies of the lasers are pulled together.
Further, there are clearly discrete frequencies towhich theΩi
converge. To test that misalignment in the form of nonzero ε
is the fundamental cause of frequency locking, we use the
full system of equations [Eq. (1)] and follow a similar
procedure to the one shown in the left panel of Fig. 3. We
consider a system of ten lasers that are initially perfectly
aligned. In a continuous simulation, every 300 ns the
misalignment scaling ε is increased by 0.001 ns. We record
the delay coordinate for each laser (which should be related
to the main frequency of the laser) at the last 30 ns of each
time segment and plot the set of points as a function of ε
(Fig. 3, right panel). The arrays have the same instance of
frequency disorder with σ ¼ 3 GHz.
We have seen that random misalignment can cause

perfect frequency locking and improve phase synchroniza-
tion of an otherwise poorly synchronized diode laser array.
Can engineered disorder achieve a similar effect?
Apparently so: Figure 4 shows an example of phase
synchronization in a 100-diode two-dimensional array
subject to four different types of disorder. In each panel,
the data represent 100 random realizations of disorder, all
based on the same disordering principle. Linear and

random disorder result in a high level of synchrony hSi,
while sinusoidal and constant disorder lead to rather poor
synchrony. One could interpret the effect of certain types of
spatial disorder as reducing spatial symmetries in the time
delay and therefore reducing the number of available states
to the system (random and linear), while others (sinusoidal
and constant disorder) conserve or only mildly reduce
spatial symmetries in time delays.
To summarize, we have demonstrated how one type of

disorder can mitigate the destructive effect of another type.
In this case, disorder in time delay between laser elements
seems to overcome the effects of heterogeneity. The
reduced model for frequency locking in the system sug-
gests that the mechanism might be relevant in other types of
systems and that the underlying mechanism adds to the list
of other well-known mechanisms. We believe the results
presented in this Letter pose an important question about
how disorder (random and/or engineered) can be used to
overcome the effects of heterogeneity and improve fre-
quency and phase locking in large single-mode semi-
conductor diode arrays.
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