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We theoretically study subradiant states in an array of atoms coupled to photons propagating in a
one-dimensional waveguide focusing on the strongly interacting many-body regime with large excitation
fill factor f. We introduce a generalized many-body entropy of entanglement based on exact numerical
diagonalization followed by a high-order singular value decomposition. This approach has allowed us to
visualize and understand the structure of a many-body quantum state. We reveal the breakdown of
fermionized subradiant states with increase of f with the emergence of short-ranged dimerized
antiferromagnetic correlations at the critical point f ¼ 1=2 and the complete disappearance of subradiant
states at f > 1=2.
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Introduction.—The Dicke model, describing collective
radiance of dense atomic clouds, is one of the paradigmatic
concepts of quantum optics [1,2]. Recently, it has become
possible to test the classical ideas of collective spontaneous
emission for man-made platforms of waveguide quantum
electrodynamics (WQED), studying arrays of natural or
artificial atoms (superconducting qubits, quantum dots,
quantum defects) coupled to photons propagating in a
waveguide [3–5].
Historically, the research has been mainly focused on the

superradiant symmetrically excited Dicke states of atomic
arrays [6,7]. The subradiant states have attracted attention
only recently. Their structure is much more subtle due to
intrinsically high spectral degeneracy that can make the
spontaneous decay dynamics strongly nonexponential [8,9].
Single-excited (k ¼ 1) subradiant states are relatively
simple, they can be constructed as a superposition of
individual atom excitations that is out of phase with the
light wave. The simplest example is a single-excited
dark dimer state shown in Fig. 1(a) with the wave function
jψi ¼ ðσ†1 − σ†2Þj0i=

ffiffiffi
2

p
(here σ†1;2 are the atomic raising

operators) [10]. Importantly, the smaller is the distance
between the atomsd, the darker is the state. The spontaneous
decay rate scales as ðd=λ0Þ2 where λ0 is the wave-
length at the atomic resonance. In an atomic array, single-
excited dimer states hybridize with each other and form
subradiant standing waves [11–17], illustrated in Fig. 1(b).
The subradiant states with k > 1 excitations have become
a subject of active research only relatively recently
[8,9,13–19]. In particular, when the excitation fill factor
f ¼ k=N is small, subradiant states are antisymmetric
products of single-particle subradiant states [14,20], reflect-
ing so-called fermionization of atomic excitations. There
also exists an “electron-hole” symmetry between the fill
factors f and 1 − f. Based on such symmetry one can expect

interesting effects at the transition point f ¼ 1 − f ¼ 1=2
when the excitation degeneracy is at maximum. Indeed,
many-body delocalization transition has been predicted in
disordered arrays for f ¼ 1=2, that can be also naively
understood as suppression of disorder by electromagneti-
cally induced transparency (EIT) [21]. Many-body signa-
tures in spontaneous emission cascade for atoms without a
waveguide were revealed in [9]. To the best of our knowl-
edge, subradiant multiple excited states in waveguide-
coupled atomic arrays have been directly probed only in
one very recent experiment with just N ¼ 4 superconduct-
ing qubits [22]. Moreover, the structure of subradiant states
in the strongly many-body regime of f ∼ 1=2, when the
fermionic ansatz [14] is no longer valid, remains unclear.
Here we focus on the subradiant states at large excitation

fill factors and demonstrate a strong modification of their
lifetimes and spatial structure at the transition point
f ¼ 1=2. We show that for an array with even atom number
N, the darkest subradiant state at f ¼ 1=2 is not a simple
combination of standing waves, as in Fig. 1(b), but a dimer
product state

(a)

(b)

(c)

FIG. 1. Schematics of (a) single-excited dimer dark state for
two atoms; (b) dark state in array of atoms near a waveguide for
small fill factor f ≪ 1 that is an antisymmetrized product of
standing waves [14]; (c) many-body dimerized dark state Eq. (1)
for f ¼ 1=2.
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jψi ¼ 1

2N=4 ðσ†1 − σ†2Þðσ†3 − σ†4Þ…ðσ†N−1 − σ†NÞj0i; ð1Þ

schematically illustrated in Fig. 1(c). The wave function
Eq. (1) can be intuitively understood in the following way.
First, by construction it is a superposition of k ¼ N=2 dark
dimer excitations of type Fig. 1(a). Second, we choose only
the dimers formed by nearest neighbors, because the
smaller the dimer the darker the state. The state Eq. (1)
is similar to one predicted in Refs. [23,24], but the setup
and the mechanism of dimerization are quite different. In
Refs. [23,24], the dimerization results from the driven-
dissipative dynamics in a chirally coupled array, when the
back-propagation of excitations has been suppressed. Our
setup is not chiral and dimerization emerges directly from
the structure of subradiant eigenstates, rather than from
quantum or nonlinear classical [25,26] dynamics. Our goal
is to examine the transformation from the standing waves in
Fig. 1(b) to the dimer state Fig. 1(c) with the increase of the
fill factor f.
Many-body excitation spectrum.—The structure under

consideration is characterized by the following effective
Hamiltonian, valid in the usual Markovian and rotating
wave approximations [5,19,27], H ¼ −iγ1D

P
N
n;m¼1

σ†nσmeiφjm−nj, where the energy is counted from the atomic
resonance ℏω0 and φ ¼ ω0d=c≡ 2πd=λ0 is the phase
gained by light travelling the distance d between two
neighboring atoms. The operators σ†m are the spin 1=2
raising operators, σ2m ¼ 0, σmσ

†
m þ σ†mσm ¼ 1, ½σm; σn� ¼ 0

for m ≠ n. The parameter γ1D ≡ Γ1D=2 is the radiative
decay rate of single atom into the waveguide, rendering the
effective Hamiltonian non-Hermitian. We are interested in
the decay rates of multiply excited subradiant eigenstates
with k excitations,

jψ ðkÞi ¼
XN

n1n2…nk¼1

ψn1n2…nkσ
†
n1σ

†
n2…σ†nk j0i; ð2Þ

where the tensor ψ is symmetric and turns to zero if any of
the two indices coincide. The decay rates are found
numerically from the effective Schrödinger equation
Hjψ ðkÞi ¼ kεjψ ðkÞi as Γ ¼ −Imε.
Figures 2(a) and 2(b) present the dependence of the

radiative decay rates of most subradiant states on the array
period d, and the number of excitations k. The calculated
decay rate is the smallest when the period is close to 0 or to
λ0=2. For f ≪ 1, it scales as Γ=γ1D ∼ ðd=λ0Þ2=N3 for
d → 0 [14]. When k ≪ N=2 the most-subradiant multi-
ple-excited states can be approximated by antisymmetric
combinations of most subradiant single-excited states with

the decay rates Γð1Þ
ν [14], ΓðkÞ ¼ P

k
ν¼1 Γ

ð1Þ
ν =k [black curves

in Fig. 2(b)]. However, the situation changes dramatically
for k ≥ N=2, when f ≥ 1=2. The subradiant states dis-
appear: all the decay rates become larger than those of a

single atom, Γ≳ γ1D, in agreement with the qualitative
picture in Fig. 1. Such behavior is universal as shown by the
phase diagram Fig. 2(c) where we plot the decay rates of
most subradiant states for a fixed period depending on both
the number of atoms and the number of excitations. Red
and blue lines correspond to the fully excited and half-
excited arrays, with fill factors f ¼ 1 and f ¼ 1=2. Clearly,
the decay rates in the region between blue and red lines,
where f > 1=2, are significantly larger than those for
f < 1=2.
The absence of subradiant states for f > 1=2 also

follows from a general combinatoric argument. The tensor
ψ is defined by just Ck

N complex amplitudes due to the
permutation symmetry. For subradiant states, these ampli-
tudes satisfy certain linear conditions, that forbid sponta-
neous decay into all the Ck−1

N states with k − 1 excitations.
Thus, the number of k-excited subradiant states is equal to
the total number of states minus the number of conditions,
Ck
N − Ck−1

N , and they exist only for k ≤ N=2. More details,
linking multiple-excited states to the states of N spin-1=2
electrons with a certain total momentum, are given in the
Supplemental Material [28].
Decompositon of multiple-excited state over single-

excited states.—Because of the large size of the Hilbert
space, even visualization of the numerically calculated
wave function for k ≥ 3 excitations is quite challenging
[20]. However, there exist variational approximations to the
full wave function, that represent the full k-rank tensor
ψn1n2…nk as a product of several tensors of lower rank, such
as matrix product states and tensor network technique
[33,34]. Such approaches have already been used in
WQED [8,35]. Here, we use a slightly different technique
of multilinear singular value decomposition [36,37],
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FIG. 2. (a),(b) Dependence of the radiative decay rate minΓ for
the most-subradiant state in the 10-atom array on the array period
d and number of excitations k. For (b) the number of excitations is
shown near each curve. (c) Dependence of minΓ on number of
atoms N and number of excitations k calculated for a fixed period
d ¼ 0.05λ0. Red and blue lines show the dependences k ¼ N (fill
factor f ¼ 1) and k ¼ N=2 (f ¼ 1=2), respectively. Decay rates
are normalized to γ1D.

PHYSICAL REVIEW LETTERS 127, 173601 (2021)

173601-2



that, contrary to the matrix product state approach, is
numerically exact. We represent the k-rank symmetric
tensor ψn1n2…nk as

ψn1n2…nk ¼
XN

α1α2…αk¼1

Λα1α2…αkU
α1
n1U

α2
n2…Uαk

nk ; ð3Þ

where the tensorU is unitary,
P

N
n¼1U

α
n
�Uα0

n ¼ δαα0 , and the
so-called core tensor Λ is symmetric and quasidiagonal,
i.e., it satisfies the identity

P
N
α2…αk¼1 Λ�

α1α2…αkΛα0
1
α2…αk ¼ 0

for α1 ≠ α01. The decomposition Eq. (3) is schematically
illustrated in Fig. 3(a). It generalizes the conventional
Schmidt (singular) value decomposition of a two-particle
wave function (for k ¼ 2 one has Λα1α2 ≡ λα1δα1α2 where λα
are the usual singular values). In the multilinear decom-
position, the role of singular values is played by the
Frobenius norms of the subtensor of the tensor Λ defined
as [36] ðλαÞ2 ¼

P
N
α2…αk¼1 jΛα;α2…αk j2. Because of the

orthogonality properties of the tensors Λ and U, the sum
of jψn1n2…nk j2 over all the indices is equal just to

P
N
α¼1 jλαj2, similarly to the case of usual single-particle

Schmidt decomposition. This analogy allows us to intro-
duce the generalized entropy of entanglement as

S ¼ −
XN

α¼1

jλαj2 ln jλαj2: ð4Þ

The expression Eq. (4) has been originally introduced in
quantum information theory [38] as a measure of two-
particle entanglement. By construction, Eq. (4) is zero for a
product state ψn1n2 ¼ Un1Un2 , where only one of jλαj2 is
nonzero and equal to one. Thus, our Eq. (4) quantifies the
number of nonzero coefficients jλαj2, that is a number of
product statesUα1

n1U
α2
n2…Uα3

k necessary to describe a general
k-excited state ψ . We use the numerical decomposition
algorithm from [37] that is numerically efficient only for
relatively small k ≪ N. Thus, for k > N=2 it is more
instructive to exploit the “electron-hole symmetry” of the
problem [8] and represent the k atomic excitations as N − k
“holes” in the array of fully excited atoms.
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FIG. 3. (a) Illustration of high-order singular value decomposition for a three-particle wave function ψn1n2n3 . (b) Entanglement entropy
Eq. (4) calculated depending on the number of excitations k and the array period d for N ¼ 10 atoms. (d)–(l) Distributions of higher
order singular values λα (left column), eigenvectors Uα

n (middle column), and correlation functions hσ†mσni (right column) for the most
subradiant states with k ¼ 2 (d)–(f), k ¼ 4 (g)–(i), and k ¼ 5 (j)–(l) excitations. Correlation functions hσ†nσnþmi are also shown in
(c) depending on the photon-photon distance m. Calculation has been performed for d ¼ 0.05λ0.
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The dependence of entanglement entropy of most sub-
radiant states on the number of excitations and the array
period is shown in Fig. 3(b). These results are in good
qualitative agreement with the radiative decay rates in
Fig. 2. The entropy increases, i.e., the states become more
complex, for (i) larger numbers of excitations and
(ii) stronger detuning of the period d from the degeneracy
points d ¼ 0 and d ¼ λ0=2. We show explicitly all the
multilinear singular values in Figs. 3(d), 3(g), and 3(j)
depending on the number of excitations. The general
observation is that a subradiant state with k excitations
has first k multilinear singular values much larger than the
remaining N − k ones. This confirms our qualitative
interpretation of Eq. (3) as the expansion of a many-body
state over single-particle ones. Crucially, the obtained
single-particle states Uα strongly depend on the number
of excitations, i.e., they are renormalized by interactions.
When the fill factor is small, as in the case of f ¼ 1=5 in
Fig. 3(e), the states U1;2 are just two standing waves with
zero and one node, in agreement with the analytical
fermionic ansatz of Ref. [14] for a long array with
d ≪ λ0, see also the Supplemental Material of [19]:

U1
n∝ ð−1Þn sinπðn−1=2Þ

N
; U2

n∝ ð−1Þn sin2πðn−1=2Þ
N

;

ð5Þ

n ¼ 1; 2…N. However, the functionsUα
n drastically change

at the threshold f ¼ 1=2, for k ¼ N=2 excitations, see
Fig. 3(k). Namely, they become “dimerized” with equal
amplitudes (up to the sign) at neighboring sites 2k − 1 and
2k, supporting the naive picture Fig. 1(c). The functionsUα

n
can be well fitted by the dimerized standing waves

U2m−1 ¼ −U2m ∝ cos
πrðm − m̄Þ

N
or sin

πrðm − m̄Þ
N

;

ð6Þ

where m ¼ 0; 1…N=2, m̄ ¼ 1=2þ N=4, and the fit
parameters r are given in [28]. The onset of dimerization
effect Eq. (6) can be already seen for a double-excited
subradiant state in a four-atom array, that reads jψi ¼
1
2
ðσ†1 − σ†2Þðσ†3 − σ†4Þj0i for d ≪ λ0 [19]. However, since the

study in Ref. [19] has been restricted just to the case of just
k ¼ 2 two excitations, the generality of the dimerization
effects was not clear before.
The dimerization of subradiant states is directly visual-

ized by their spin-spin correlation function hσ†mσni, plotted
in the right column of Fig. 3. For k ¼ 2 excitations the
correlations are long-ranged, reflecting the spatial profile of
the eigenstates Eq. (5), see Fig. 3(f). At the threshold, for
k ¼ N=2, the correlations increase and become short-
ranged, see Fig. 3(l) and also the cross section in
Fig. 3(c). The only significant elements of the correlation

matrix at the threshold are hσ†mσmi ≈ 1
2
and hσ†2j−1σ2ji ≈ − 1

2
,

i.e., there appears a short-range effective antiferromagnetic
order.
Detection of the subradiant-to-bright transition.—While

single-excited subradiant states can be straightforwardly
probed as reflection resonances [39], the optimal protocol
to probe multiple-excited subradiant states in an equidistant
qubit array is not yet clear because they are weakly coupled
to the waveguide. Qubits or atoms should be probably
excited locally from the side and the spin-spin correlation
functions can be then measured also locally. However,
interesting results can be potentially obtained even from the
incoherent scattering spectra measured directly through the
waveguide. We assume that the array is coherently
excited from the left at the frequency ω, as described
by the coupling term

ffiffiffiffi
P

p
γ1D

P
N
j¼1ðσje−iðω−ω0Þt þ H:c:Þ

in the electric dipole and rotating wave approximations,
where P is the normalized input power. Next, we
use the input-output theory [40] and calculate the
total amount of incoherently scattered photons
IðωÞ ¼ 1 − jrðωÞj2 − jtðωÞj2, where rðωÞ and tðωÞ are
the amplitudes of coherent reflection and transmission
coefficients. Incoherent scattering spectra calculated for a
4-atom array are shown in Fig. 4(a). At low power, the
spectra show narrow peaks centered at the frequencies of
the single-excited subradiant states, shown by vertical
dashes at the bottom horizontal axis in Fig. 4(a). At higher
powers, these peaks shift and broaden, making it quite hard
to identify possible manifestation of double excited
states (vertical dashes at the top horizontal axis). The peak
corresponding to the most subradiant double-excited state
at ðω − ω0Þ=γ1D ≈ −0.3 is definitely not resolved.
However, a second peak ðω − ω0Þ=γ1D ≈ −0.7, seen at
higher powers (dark red curve) could be related to a second
double-excited subradiant state. We have also extracted
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FIG. 4. (a) Incoherent scattering spectra calculated for an array
of N ¼ 4 atoms with the period d ¼ 0.05λ0 for several powers
indicated on graph. Vertical dashes at the bottom (upper)
horizontal axis show the frequencies of the two most subradiant
states with k ¼ 1 (k ¼ 2) excitations, respectively. (b) Linewidth
of the narrowest resonance feature in the incoherent scattering
spectra depending on the pump power P and the array period.
Stars in (b) indicate the values of parameters used for calculation
in (a). The excitation power has been normalized to γ1D.
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from each spectrum the linewidth of the narrowest peak and
plotted it by color in Fig. 4(b) as a function the pump power
P and the array period. The result qualitatively resembles
Fig. 2(a): narrow spectral features, corresponding to sub-
radiant states, become wider with the power increase and
disappear above a certain threshold. Similarly to Fig. 2(a),
an interesting nonmonotonous behavior is observed near
the anti-Bragg period d ¼ λ0=4. However, in the consid-
ered setup all the occupation numbers hσ†mσmi stay below
1=2 and the threshold f ¼ 1=2 is never crossed.
Nevertheless, the evolution of the incoherent scattering
spectra with pump power similar to Fig. 4 could be an
important precursor of the subradiant-to-bright transition.
Outlook.—Our findings provide yet another demonstra-

tion of the fundamental many-body physics in the wave-
guide quantum electrodynamics setup. In this work, we
have limited ourselves to relatively short arrays with just
N ≲ 10 atoms, that are well within the range of state-of-the-
art experimental structures with superconducting qubits
[41]. We expect much richer physics for larger arrays, when
bound photon pairs start playing a role [42]. For example,
it is quite intriguing whether “magic periods” such as
d ¼ λ0=12 [43,44] with a quasiflat band of composite
excitations survive in the many-body regime. Another
standing problem is the influence of disorder and the
possible interplay of the many-body delocalization
transition [21] with the subradiant-to-bright transition for
f ¼ 1=2 fill factor. On the more applied side, our results
could be useful to design long-living complex quantum
correlations.
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