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We introduce a new way of reconstructing the equation of state of a thermodynamic system near a
second-order critical point from a finite set of Taylor coefficients computed away from the critical point. We
focus on the Ising universality class (Z2 symmetry) and show that, in the crossover region of the phase
diagram, it is possible to efficiently extract the location of the nearest thermodynamic singularity, the Lee-
Yang edge singularity, from which one can (i) determine the location of the critical point, (ii) constrain the
nonuniversal parameters that maps the equation of state to that of the Ising model in the scaling regime, and
(iii) numerically evaluate the equation of state in the vicinity of the critical point. This is done by using a
combination of Padé resummation and conformal maps. We explicitly demonstrate these ideas in the
celebrated Gross-Neveu model.
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Introduction.—In the vicinity of a critical point, the
correlation length of a thermodynamic system grows, the
underlying microscopic properties become irrelevant, and
consequently, many different substances exhibit the same
behavior. This powerful notion of universality allows one to
classify second-order phase transitions based on the under-
lying symmetries of the system without detailed knowledge
of the microscopic dynamics. Some famous examples are
the liquid-gas and ferromagnetic transitions, both of which
possess critical points that are in the (static) universality
class of the 3D Ising model. Universality identifies the
singular behavior of the equation of state, say pressure as a
function of temperature and chemical potential pðT; μÞ,
with the Ising equation of state as a function of the Ising
variables, i.e., the reduced temperature r and the magnetic
field h near the critical point. However, neither the location
of the critical point, nor the relation between ðT; μÞ and
ðr; hÞ are universal, and for a quantitative description of the
critical phenomena they have to be computed from the
microscopic dynamics of the theory of interest. This is in
many cases a mathematically intractable task, and often the
solution can only be obtained as a series expansion at a
point away from the critical point with a finite number of
terms [1].
In this Letter, we consider the following general prob-

lem: given a truncated local series expansion of the
equation of state in some parameter such as μ, obtained
away from the critical point, what can we say about the

critical behavior of the system?More precisely, how can we
determine whether a critical point exists, and if it does, how
can we reconstruct the singular behavior of the equation of
state near the critical point from the truncated expansion
obtained away from it? We show that it is possible to obtain
a surprisingly large amount of information about the critical
behavior of the system from the series coefficients, even if
we have access to a modest number of them.
A major motivation for this work is the search for the

conjectured critical point in the phase diagram of quantum
chromodynamics (QCD) [2], which is one of the major
outstanding problems in nuclear physics both theoretically
and experimentally [3]. The theoretical approaches are
severely limited by the sign problem that prevents first-
principle lattice computations at nonzero baryon chemical
potential μB, and one of the methods to deal with this
obstacle is to expand the equation of state around μB ¼ 0
and compute the Taylor coefficients on the lattice without a
sign problem (see [4] for a recent review). Another
motivation is to understand the properties of strongly
interacting fermions, such as unitary Fermi gases, where
our theoretical knowledge of the equation of state is
typically limited to the first few terms in the virial
expansion [5].
Lee-Yang edge singularities.—Before detailing our

method, we briefly summarize the Lee-Yang edge singu-
larities that play a crucial role in our analysis. In their
seminal work on phase transitions [6,7], Lee and Yang
showed that the thermodynamic properties of a system is
encoded in the distribution of the zeros of the partition
function ZðζÞ as a function of fugacity, ζ ¼ eμ=T . For a
finite system, the partition function is a positive polynomial
for ζ ≥ 0. However, in general, it has zeros for complex
values of μ and T. In the thermodynamic limit, the zeros
coalesce into branch cuts emanating from the so-called
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Lee-Yang (LY) edge singularities. When the LY singular-
ities pinch the real axis, the system exhibits a second-order
phase transition. Likewise, the branch cut associated with a
LY singularity crosses the real line when there is a first-
order phase transition.
The LY singularities are critical points themselves and

have their own universality class. For example, for the Ising
model, and OðNÞ models in general, they are characterized
by the ϕ3 theory with a pure imaginary coupling [8]. For
these models, the analytical structure of the LY singularities
has been studied [9,10]. In the complex plane of the scaling
variable x ¼ hr−βδ [11], the singularities are located in the
pure imaginary axis x ¼ �ixLY, where xLY ∈ R has
recently been calculated via the functional renormalization
group method [13]. The magnetization around the LY
singularity behaves as m −mc ∼ ðx� ixLYÞσ with the
critical exponent σ ≈ 0.074–0.085 for d ¼ 3 [14]. The
LY singularities in the context of a QCD critical point
has been discussed in, for example, [15–21].
Consider the equation of state of a theory near a critical

point ðTc; μcÞ in the Ising universality class. From univer-
sality we can relate it to the Ising model via a linear map
[22,23]

�
r

h

�
≔ M

�
T − Tc

μ − μc

�
¼

�
rT rμ
hT hμ

��
T − Tc

μ − μc

�
: ð1Þ

This relation then leads to the following expression for the
trajectory of the LY singularities [17]:

μLYðTÞ ≈ μc − c1ðT − TcÞ � ixLYc2ðT − TcÞβδ;

where c1 ≔
hT
hμ

c2 ≔
rμβδ

hμ

�
rT
rμ

−
hT
hμ

�
βδ

: ð2Þ

Notice that c1 is the slope of the crossover line, whereas c2
depends on the relative angle between the h and r axes
[22,23]. Therefore, the trajectory in Eq. (2) depends on not
only the location of the critical point, but also on the
nonuniversal mapping parameters. We now explain how to
optimally construct Eq. (2) from a series expansion.
The method.—Consider a thermodynamic function

fðT; μÞ (pressure, density, susceptibility, etc.) given a
series expansion with a finite number of terms: fðT; μÞ∼P

N
n¼0 fnðTÞμ2n. Our goal is to extract as much information

from it as possible, especially about its singular behavior
near a critical point if there is one. Obviously, in this form,
what we have is a polynomial that does not exhibit any
singular behavior. In principle, from a ratio test it is
possible to determine the radius of convergence, which
would indicate the location of the closest singularity to
origin. However, when the nearest singularities are a
complex conjugate pair of LY singularities (which is the
case for a smooth crossover), the ratios of series coeffi-
cients do not converge monotonically, but rather have an

oscillating envelope as a result of Darboux’s theorem [24].
This makes numerically extracting the singularity from the
ratios challenging. Alternatively, the singular behavior
of fðT; μÞ can be approximately constructed by a Padé
resummation, PN=2½f�ðμ2Þ ≔ pðμ2Þ=qðμ2Þ, where p and q
are polynomials of order N=2 whose the coefficients are
determined by expanding PN=2½f�ðμ2Þ and identifying the
coefficients with the Taylor coefficients. The singularities
of f, typically branch points, are approximated by the poles
and zeros of the Padé approximant. However, as we will
demonstrate later, Padé resummation has a known short-
coming: it creates spurious singularities which limits its
range of applicability. In addition, it is also not the most
optimal approximation scheme and can be dramatically
improved by pairing with a conformal map [27]. The
key idea is to apply an appropriately chosen conformal
map μ2 ≔ ϕðzÞ and do the Padé resummation in
z∶ CPN=2½f�ðzÞ ≔ p̃ðzÞ=q̃ðzÞ, where p̃ and q̃ are order
N=2 polynomials whose coefficients are determined by
the Taylor coefficients of f(ϕðzÞ). The singularities of
CPN=2½f�ðzÞ are mapped to the complex μ2 plane as via
ϕðzÞ. For the remainder of this Letter, we shall refer to this
method of extracting singularities simply as “conformal
Padé.” Unlike Padé, conformal Padé does not suffer from
the spurious pole problems. It also provides an optimal
approximation to the original function for a wide range of
functions as proven in [27]. Our strategy is to first construct
the trajectory (2) by extracting the μLYðTÞ via conformal
Padé for a sequence of temperatures and then to obtain the
location of the critical point as well as the coefficients c1
and c2 from it. This is possible since the critical expo-
nents are fixed by universality and, as mentioned, xLY is
known [13].
Conformal Padé methods are typically used to recon-

struct Borel plane singularities in resumming asymptotic
series, such as the ϵ expansion [28] or perturbation series
for relativistic [29] and nonrelativistic [30] systems. Here
we take a different approach and apply it to a convergent
series to directly extract its singular behavior near the
critical point. Our input, the series expansion of the
equation of state, does not have to come from perturbation
theory or the ϵ expansion. Our approach is similar to that
of [1] but with a key differences: we focus on the complex
LY singularities and conformal maps play a crucial role in
reconstructing the equation of state.
The Gross-Neveu model.—To concretely demonstrate

these ideas, we focus on the celebrated Gross-Neveu (GN)
model [31], which is a four-fermion theory with the action

S ¼
Z

d2x

�
iψ̄ð=∂ −mqÞψ̄ þ g2

2
ðψ̄ψÞ2

�
; ð3Þ

where ψ is a Dirac fermion with Nf flavors. It exhibits
some of the key features of QCD, such as asymptotic
freedom, chiral symmetry breaking, and dimensional
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transmutation. Notably, it was also shown that the GN
model gives a reasonably good description of the first-
order phase transition in doped polyacetylene [32]. The
theory has a discrete (Z2) chiral symmetry ψ → γ5ψ for
mq ¼ 0. We will work in the large Nf limit Nf → ∞ with
g2Nf ¼ fixed, where the fluctuations are suppressed and
the mean field solution is exact.
The exact phase diagram of the GN model is known

[33,34] and has a rich structure such as spatially inhomo-
geneous kink-antikink crystals at high densities [34] and an
exactly soluble, all-orders Ginzburg-Landau expansion
[35]. However, in order to keep the discussion simple,
we shall assume that the translational symmetry remains
unbroken in this Letter. Furthermore, we focus on the
crossover region of the phase diagram, which is not affected
by the existence of inhomogeneous phases.
Thermodynamics of the model follows from minimizing

the grand potential:

ΩðϕÞ ¼ ϕ2

2π

�
logϕ −

1

2
þ γ

�
−
γ

π
ϕ

− T
Z

dk
2π

Y
η¼�1

log½ð1þ e−ð
ffiffiffiffiffiffiffiffiffiffi
k2þϕ2

p
þημÞ=TÞ� ð4Þ

with respect to ϕ, which determines the fermion massM as
a function of T, μ, and γ. The parameter γ ∝ mq is a
measure of explicit chiral symmetry breaking and it
vanishes in the chiral limit [33]. In our analysis, we
will work with a fixed, nonzero value of γ. The equation
of state is obtained by identifying the pressure as
pðT; μÞ ¼ −Ω½MðT; μÞ� ≔ −minϕΩ½ϕ�. The homogeneous
phase diagram of the model is shown in Fig. 1. In the chiral
limit (γ ¼ 0), the ordered phase M ≠ 0, where chiral

symmetry is broken, and the disordered phase M ¼ 0,
where the chiral symmetry is restored, are separated by a
second(first)-order transition for T < T tc (T > T tc) shown
in solid blue (dotted red) curves. These curves merge at a
tricritical point ðT tc; μtcÞ ≈ ð0.318; 0.608Þ [36]. When the
chiral symmetry is explicitly broken, for a fixed γ ≠ 0, the
transition is a smooth crossover for hight T that ends at a
critical point ðTc; μcÞ and turns into a first-order transition.
Since the theory has aZ2 chiral symmetry, the second-order
transition is in the same static universality class as the mean
field Ising model. The trajectory of the LY singularities
μLYðTÞ is determined by the condition

∂ϕΩðϕÞ ¼ ∂2
ϕΩðϕÞ ¼ 0: ð5Þ

In the crossover region T > Tc, this condition leads to a pair
of complex solutions μLYðTÞ ¼ ReμLYðTÞ � iImμLYðTÞ,
which coalesce and pinch the real axis at the ordinary
critical point as expected: μLYðTcÞ ¼ μc. In the vicinity of
the critical point, μLYðTÞ takes the scaling form given in
Eq. (2) with the mean field exponents β ¼ 1=2, δ ¼ 3,

μLYðTÞ ∼ μc − c1ðT − TcÞ þ ic2xLYðT − TcÞ3=2; ð6Þ

where in the mean field limit xLY ¼ 2=3
ffiffiffi
3

p
. In the next

section, we compute Tc, μc, c1, and c2 directly from a
truncated series expansion of the equation of state and
compare these results with the exact solution obtained by
numerically solving Eq. (5).
Results.—We computed the equation of state

perturbatively in μ2 by first solving ∂ϕΩðϕÞ ¼ 0 order-
by-order for a range of temperatures with γ ¼ 0.1. By
plugging this solution into Eq. (4) and expanding in μ2, we
obtained the Taylor series expansion for the pressure
pðT; μÞ ≈P

N
n¼0 p2nðTÞμ2n. To illustrate the numerical

evaluation of the equation of state, we focus on the
susceptibility,

χðT; μÞ ¼ ∂2p
∂μ2 ≈

XN−1

n¼0

ð2nþ 2Þð2nþ 1Þp2nþ2ðTÞμ2n; ð7Þ

because its singular part in the vicinity of the critical point
grows as χðμÞ ∼ Reðμ2 − μ2LYÞσ−1, where σ ¼ 1=2 in the
mean field limit. Of course, in many cases, it is very
difficult to generate such large number of terms. Therefore,
we also show results obtained by 11 terms for comparison.
We computed the singularities both from Padé and con-
formal Padé, which are shown in Fig. 2 for two different
temperatures very close to and away from the critical point.
We used a conformal map, ϕ1ðzÞ ¼ 4μ2LYz=ð1þ zÞ2,
defined over a one-cut complex plane with a singularity
located at μ2LY to resolve f near the singularity μ2LY. This
map transforms a square-root branch into a simple pole and
is numerically easy to evaluate [27]. Since we are dealing

FIG. 1. The phase diagram of the Gross-Neveu model assuming
unbroken translational symmetry. Inset: the mapping between the
Ising model parameters, r, h and T, μ near the critical point given
in Eq. (1).
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with a two-cut plane with singularities located at μ2LY and
μ�2LY, ϕ1ðzÞ does not eliminate the branch cut. Nevertheless
it is fairly accurate in extracting location of the singularity
locally. Since we do not know what μLY is a priori, we first
obtained a crude estimate for it from regular Padé, and we
used it as an input in ϕ1ðzÞ and refined this estimate via
conformal Padé.
In order to reconstruct the trajectory μLYðTÞ, we repeated

this procedure for different temperatures. In order to
smooth out the T dependence of μLY we used fits whose
forms are determined from Eq. (6); namely, a linear fit for
ReμLYðTÞ and a y ¼ ax3=2 fit for ImμLYðTÞ. The results are
shown in Fig. 3. From these fits we obtained the values of
Tc, μc, c1, and c2 shown in Table I.
Finally, we computed the susceptibility as a function

μ via Padé and conformal Padé. In order to capture
the global behavior of the equation of state, we used a
different conformal map, ϕ2ðzÞ ¼ 4jμLYj2½θ=ð1 − zÞ2�θ½1−
θ=ð1þ zÞ2�1−θ defined on a two-cut complex plane
with two branch points located at jμLYj2e�iπθ [27,29,30].

The results for two representative temperatures near and
away from Tc are shown in Fig 4.
Discussion.—We now discuss these results. First, notice

that, near the critical point T ¼ 1.08Tc, Padé cannot
resolve ImμLY and creates a sequence of poles and zeros
along the real axis. Even when it does, away from the
critical point T ¼ 1.60Tc, there are still spurious poles
along the real axis, which renders Padé (gray curves in
Fig. 4) inapplicable for μ≳ ReμLY. As seen from the same
figures, conformal Padé does not suffer from such a
problem and even for 11 terms, it does capture the
qualitative behavior of the peak. For 21 terms, the agree-
ment with the exact result up to μ ≈ 0.8 is quite remarkable.
To refine the location of a given singularity μLY, we found
the one-cut conformal map ϕ1 to be very accurate and easy
to execute numerically. In order to capture the global
properties of χðT; μÞ, we used a two-cut map ϕ2.
From the singularities extracted from conformal Padé,

we constructed the LY singularity trajectory [Eq. (6)]. The
critical temperature Tc is obtained from the point ImμLY

FIG. 2. The poles and zeros of Padé (red, yellow triangles,
respectively) and conformal Padé (blue, green circles, respec-
tively) approximants for two different temperatures compared
with the exact locations of μ2LY.

FIG. 3. The Lee-Yang singularity trajectory μLYðTÞ recon-
structed from conformal Padé with 20 and 10 terms. The vertical
line denotes Tc.

TABLE I. The location of the critical point and the Ising model
mapping parameters given in Eq. (6) extracted from conformal
Padé.

Tc μc c1 c2

Exact 0.192 0.717 0.249 4.684
Conf. Padé (N ¼ 21) 0.195 0.716 0.248 4.323
Conf. Padé (N ¼ 11) 0.185 0.707 0.225 3.666

FIG. 4. The susceptibility as a function of μ for two different
temperatures. Vertical lines denote ReμLYðTÞ.
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vanishes (the vertical line in Fig. 3). Therefore, it is crucial
to be able to accurately compute ImμLY where conformal
Padé has a significant advantage over other methods, even
with an input of 11 Taylor coefficients. The remaining
parameters μc, c1, and c2 are extracted from fits explained
above. Notably, the location of the critical point can be
determined with less than 5% error even with 11 terms.
The error is larger for the crossover slope, c1 and c2,
however, it is below 10% for all cases, except for c2 with
11 terms (≈21%).
Summary and conclusions.—In this Letter, we tackled a

general problem: given a truncated series expansion of the
equation of state of a theory obtained away from any
critical point, what can we say about a the existence of a
critical point in the phase diagram and the singular behavior
of the equation of state around it? We considered a fairly
common case of a first-order transition that ends at a
second-order critical point (which is in the Ising univer-
sality class) and turns into smooth crossover. We introduced
a new way of extracting the leading singular behavior of the
equation of state around the Lee-Yang edge singularity in
the complex μ plane by using a combination of a conformal
map and Padé resummation. Equipped with the knowledge
of this trajectory, we showed how to extract the location of
the critical point and to constrain the nonuniversal Ising
mapping parameters in the scaling region. Finally, we
demonstrated that this method significantly improves the
numerical evaluation of the equation of state even with a
modest number of Taylor coefficients.
There are various extensions and refinements of these

ideas that we have left for future work. For example, one
can extend this analysis to the first-order side T < Tc,
where one expects the scaling part of the equation of state
to jump to a different Riemann sheet [9,37]. This can be
achieved by using the so-called “uniformization map” as a
part of conformal Padé, which gives access to higher sheets.
An immediate application of the ideas we developed in

this Letter is to assist the search for the critical point of
QCD both by constraining its location and the Ising
mapping parameters, as well as improving the numerical
implementation of the equation of state in the hydro-
dynamic simulations. Based on the methods presented
here and the Taylor coefficients calculated in [38], we
preliminarily estimate that the location of the QCD critical
point lies within the region ðT; μÞ ¼ ð141.0–146.1;
501.8–662.7Þ MeV. The interval partially takes into
account the uncertainties in the coefficients due to the
continuum extrapolation and statistics. One should interpret
this estimate very cautiously. Tc is expected to be lower
than chiral transition temperature, which is estimated to be
T0
c ¼ 132þ3

−6 MeV [39]. This discrepancy might be because
the number of coefficients (4 as opposed to 11) is fairly low,
the coefficients only go down to T ≈ 140 MeV, and have
large uncertainties whose effects on conformal maps have
not yet been fully understood. Therefore, although it is

encouraging that this preliminary estimate is in the ballpark
and consistent with those in [19,38], moving forward, a
detailed analysis of uncertainties in the Taylor coefficients
is necessary. Likewise, other improvements, such as incor-
porating data from imaginary μ (e.g., [37]) within this
framework, are left for future work.

We thank G. Dunne and M. Stephanov for valuable
discussions. This work was supported by UNC Junior
Faculty Development Award.
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