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We obtain full-color three-loop, three-point form factors of the stress-tensor supermultiplet and also of a
length-3 half–Bogomol’nyi-Prasad-Sommerfield operator in N ¼ 4 supersymmetric Yang-Mills (SYM)
theory based on the color-kinematics duality and on-shell unitarity. The integrand results are verified by all
planar and nonplanar unitarity cuts, and they satisfy the minimal power counting of loop momenta and
diagrammatic symmetries. Interestingly, these three-loop solutions, while manifesting all dual Jacobi
relations, contain a large number of free parameters; in particular, there are 24 free parameters for the form
factor of the stress-tensor supermultiplet. Such degrees of freedom are due to a new type of generalized
gauge transformation associated with the operator insertion for form factors. We also perform numerical
integration and obtain consistent full-color infrared divergences and the known planar remainder. The form
factors we obtain can be understood as the N ¼ 4 SYM counterparts of three-loop Higgs plus three-gluon
amplitudes in QCD and are expected to provide the maximally transcendental parts of the latter.
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Introduction.—Remarkable progress in our understand-
ing of fundamental interactions has been made in both
theoretical and experimental aspects in the last decades.
One central impetus for these developments is the uncov-
ering of surprising and intriguing mathematical structures
hidden in microscopic scattering processes, where the
maximally supersymmetric Yang-Mills theory (N ¼ 4
SYM) has been an ideal laboratory. In the planar limit,
the amplitudes are relatively well understood and even
certain all-loop integrand constructions [1,2] and non-
perturbative functional results [3,4] have been achieved,
thanks to the underlying integrability of planar N ¼ 4
SYM, see [5] for a review. However, while going beyond
the planar limit, the inclusion of color degrees of freedom
complicates the problem, because the latter breaks many of
the planar symmetries. As a result, understanding the
nonplanar sector of the theory remains a very challenging
task.
Taking advantage of the color “complications,” a remark-

able duality between color and kinematics was discovered
by Bern et al. [6,7]. The color-kinematics (CK) duality

proposes that the gauge theory amplitudes can be organized
in terms of trivalent graphs such that the kinematic
numerators satisfy identities in one-to-one correspondence
with color Jacobi identities. When combined together with
the generalized unitarity method [8–10], this duality makes
possible high-loop constructions of gauge amplitudes with
full-color dependence, see, e.g., high-loop amplitudes in
SYM [11–17] and pure YM theory [18–21], and also
Sudakov form factors up to five loops in N ¼ 4 SYM
[22–24]. Apart from the significance to gauge theories, the
duality also builds a bridge connecting gauge and gravity
theories: the gravity amplitudes can be directly constructed
from the Yang-Mills amplitudes in the CK-dual represen-
tation, via the “double copy” [7,25]. The so-called double-
copy property has many impressive utilities, for example,
for understanding the ultraviolet properties of gravity
theories [12,16,26–31]. A recent and extensive review of
the duality and its applications can be found in [32].
The CK duality has been proved at tree level using string

or gauge theory methods [33–35]. However, at loop level,
the duality is still a conjecture and has only been shown by
explicit constructions. Thus, it is very important to explore
more examples and see to what extent the duality applies. It
is worth pointing out that a loop representation fully
manifesting CK duality is generally nontrivial to reach.
For example, it has proven difficult to find such a
representation for the five-loop, four-point amplitude
in N ¼ 4 SYM [16,29]. Another example is the all-plus
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two-loop, five-gluon amplitudes in pure YM theory:
numerators with 12 powers of loop momenta that are
much more than that of Feynman diagrams have to be used
to realize the duality [21].
In this Letter, we obtain new three-loop solutions which

manifest the color-kinematics duality for a class of three-
point form factors inN ¼ 4 SYM. Interestingly, the results
contain a large number of free “gauge” parameters; for
example, for the form factor of the stress-tensor super-
multiplet, there are 24 free parameters. We would like to
emphasize that our results belong to the “simplest” type of
solutions, in the sense that they maintain all diagrammatic
symmetries and they satisfy the minimal power-counting
behavior expected inN ¼ 4 SYM. As wewill discuss later,
these free parameters originate from a new type of
generalized gauge transformation, which is induced by
the operator insertion in form factors.
Concretely, the form factors considered here describe the

interaction between three on-shell states Φi and a gauge-
invariant operator O (see [36] for an introduction),

FOð1; 2; 3; qÞ ¼
Z

dDxe−iq·xhΦ1Φ2Φ3jOðxÞj0i: ð1Þ

Here we consider half–Bogomol’nyi-Prasad-Sommerfield
(BPS) operators OL ¼ trðϕLÞ, with L ¼ 2 and 3; in
particular, O2 is a component of the stress-tensor super-
multiplet. Besides the theoretical significance to CK
duality, these form factors also bear phenomenological
interest, due to their close relation to the Higgs-plus-three-
gluon amplitudes in QCD. In particular, both these two
N ¼ 4 form factors were found to coincide with the
maximally transcendental part (i.e., functionally the most
complicated part) of the corresponding QCD results up to
two-loop order [37–41], providing examples of the general
principle of maximal transcendentality [42,43]. As for
higher-loop orders, the planar three-point form factor of
O2 has been computed via bootstrap recently up to five
loops [44] using the input from the form factor operator
product expansion (OPE) [45,46]. Our result provides for
the first time the three-loop nonplanar correction, for which
powerful methods such as the OPE bootstrap are not yet
applicable. For the form factor of O3, the two-loop result
was given in [39], and here we provide the new three-loop
result.
Below, we first give a brief review of CK duality and

introduce our computational strategy. Then we explain our
construction of CK-dual solutions. We further perform
numerical integration, check the full-color infrared (IR)
subtraction and obtain finite remainders. Finally, we
discuss the interpretation of free parameters. The complete
CK-dual solutions are given in the Supplemental
Material [47].
Review and strategy.—An instructive example to illus-

trate the color-kinematics duality is the four-gluon tree

amplitude. It is possible to represent the amplitude in terms
of three cubic graphs shown in Fig. 1,

Að0Þ
4 ¼ CsNs

s
þ CtNt

t
þ CuNu

u
; ð2Þ

where Ci are color factors given as products of structure
constants f̃abc corresponding to each trivalent vertex, and
Ni are kinematic numerators that contain intrinsic physical
information. Here we use the normalization trðTaTbÞ ¼ δab

and f̃abc ¼ trðTa½Tb; Tc�Þ. The CK duality requires that the
numerators should satisfy the dual Jacobi relations parallel
to the corresponding color Jacobi relations as [6]

Cs ¼ Ct þ Cu ⇒ Ns ¼ Nt þ Nu: ð3Þ

While the CK duality has been proved at tree level, the
striking point is that the duality can be generalized to loop
level. Consider trivalent loop diagrams for form factors
shown in Fig. 2: every internal propagator (not directly
connected to the q leg) is associated with a four-point tree
subgraph. The three diagrams in Fig. 2 containing s-, t-,
and u-channel subgraphs are related by a color Jacobi
relation, and CK duality requires that their numerators
satisfy the dual Jacobi relation as

NsðlÞ ¼ NtðlÞ þ NuðlÞ: ð4Þ

Note that the four-point subdiagrams in Fig. 2 have four off-
shell legs li; i ¼ a; b; c; d, thus it is a highly nontrivial
generalization from (3) to (4). These dual Jacobi relations
will play a central role in the following three-loop
constructions.
The general strategy of our constructions involves two

major steps. The first step is to construct an ansatz of the
loop integrand corresponding to a set of cubic graphs. By
imposing the dual Jacobi relations (4), the numerators of
different topologies are interlocked with each other, and an
ansatz for the CK-dual integrand can be obtained effi-
ciently. In the second step, we solve the ansatz by imposing
physical constraints, where the main tool is the generalized
unitarity method [8–10]. Below we implement the above

FIG. 1. Trivalent graphs for four-point tree amplitudes.

FIG. 2. Loop diagrams related by Jacobi relation.
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strategy to construct the three-loop form factor solutions.
Readers are also referred to [12,36,48] for further details of
general constructions.
Constructing CK-dual solutions.—We first discuss the

form factor of trðϕ2Þ. The starting point is to construct a set
of trivalent graphs for the three-loop integrand. Each
diagram contains four external legs: three on-shell legs
pi and one off-shell leg q associated with the operator.
Following the empirical experience from the known high-
loop CK-dual solutions [12,22,23], we exclude graphs with
tadpole, bubble, and triangle subgraphs, unless the triangle
is attached to the q leg. We find that there are 29 trivalent
topologies to consider, as shown in Fig. 3.
Next we consider Jacobi relations for all four-point

subgraphs of these topologies. It turns out that all topol-
ogies can be generated by two planar topologies, shown in
Fig. 4, which are called master graphs. Once knowing the
numerators of these two master graphs, all other numerators
can be deduced via dual Jacobi relations (4).
To construct an ansatz for two planar master numerators,

it is convenient to use zone variables xi [49], such as x2a1 ¼
ðxa − x1Þ2 ¼ l2a shown in Fig. 4. Based on the nice UV
properties of N ¼ 4 SYM and half-BPS operators, we
impose the minimal power-counting condition for loop
momenta: a one-loop, n-point subgraph carries no more
than n − 4 powers of the corresponding loop momentum
[12], with an exception that if the subgraph is a one-loop
form factor, the maximal power is n − 3 [22]. Specifically,
for N1 (the first master in Fig. 4), xa, xc can appear at most

once, so ðx2acÞ1 or ðx2aiÞ1ðx2ciÞ1, with i ¼ 1, 2, 3, 4, are
allowed; whereas terms containing xb or containing more
than one xa or xc, such as ðx2acÞ2; ðx2a1Þ2, are forbidden. For
the other master numerator N2, only xa can appear with
maximal power 2, thus only ðx2aiÞn with power n ¼ 2, 1, 0
can appear. With these constraints, we obtain an ansatz
form as linear combinations of monomials of zone variables
with an overall dimension ½x8�, and two master numerators
have 201 and 115 free parameters, respectively. Then we
get an ansatz of the complete integrand with 316
parameters.
Given the ansatz, we further apply various constraints to

fix the parameters. We first require numerators to respect
the automorphism symmetries of corresponding graphs,
see, e.g., [12,22]. This provides substantial constraints on
the ansatz and reduces the number of parameters to 105.
To fix the remaining parameters, we apply (generalized)
unitarity cuts [8–10], where two examples of the most
complicated quadruple cuts are illustrated in Fig. 5.
Interestingly, after imposing a spanning set of unitarity
cuts, there are still 24 parameters left. We point out that our
integrand correctly reproduce not only planar but also
nonplanar cuts, which ensures that the unitarity constraints
are complete. Finally, we check that all dual Jacobi
relations are satisfied. Thus, we get the physical three-loop
integrand solution with 24 free parameters that also
manifests CK duality.
Following the above procedure, we also construct the

three-loop integrand for the form factor of trðϕ3Þ. Since the
operator contains three scalars, in the trivalent diagrams
the q leg must be associated with a four-point vertex, as
shown in Fig. 6. In this case, one can divide the three-loop
topologies into two classes. The first class consists of

FIG. 3. Trivalent topologies for the form factor of trðϕ2Þ.

FIG. 4. Master graphs for trðϕ2Þ form factor.

FIG. 5. Quadruple cuts for three-loop, three-point form factors.

FIG. 6. Trivalent topologies for the form factor of trðϕ3Þ.
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integrals that involve all three external on-shell legs in the
interactions, as shown in the first four rows in Fig. 6. In the
second class, depicted by the diagrams in the last row of
Fig. 6, one of the external on-shell legs is connected
directly to the q leg; these diagrams correspond to
single-scale integrals. The dual Jacobi relations are
decoupled between these two classes; consequently, the
master topologies should be selected separately, as pre-
sented in Fig. 7: the first three planar masters are for the
first class, and the last one is for the second class.
Since the procedure of constructing and solving the

ansatz is similar to the trðϕ2Þ case, we will not go into
details and only give a brief summary for the trðϕ3Þ case.
An ansatz satisfying minimal power counting for the four
master numerators has in total 295 parameters. After
imposing the symmetry and unitarity constraints, we get
the CK-dual integrand solution with ten free parameters.
For both form factors, we give solutions of master

numerators in the Supplemental Material [47].
Results and checks.—The final CK-dual integrands of

three-loop form factors can be summarized as

Fð3Þ
OL;3

¼ F ð0Þ
OL;3

X
σ3

X
i

Z Y3
j¼1

dDlj
1

Si
σ3

CiNiQ
αi
P2
αi

; ð5Þ

where Si are symmetry factors that remove the overcount-
ing from the automorphism symmetries of the graphs, and
σ3 are the permutations of external on-shell momenta
pi; i ¼ 1, 2, 3 [50]. Explicit expressions of the symmetry
factors Si, color factors Ci, propagator lists Pαi , and
numerators Ni are given in the Supplemental Material [47].
The physical form factors constructed via the unitarity

method are expected to be independent of the remaining
free parameters. It turns out that all parameters cancel
simply at the integrand level, and such a cancellation is
related to the generalized gauge transformations induced by
the operator insertion. We will come back to this in the
discussion section. The simplified integrands of form
factors in Nc expansion can be given as

Fð3Þ
O2;3

¼ F ð0Þ
O2;3

f̃a1a2a3ðN3
cI

ð3Þ
O2

þ 12NcI
ð3Þ
O2;NP

Þ; ð6Þ

Fð3Þ
O3;3

¼ F ð0Þ
O3;3

d̃a1a2a3N3
cI

ð3Þ
O3
; ð7Þ

where d̃a1a2a3 ¼ trðTa1Ta2Ta3Þ þ trðTa1Ta3Ta2Þ.
We see that the form factor of trðϕ2Þ contains a non-

planar three-loop correction. Notably, nondipole correc-
tions of IR structures appear for the first time at three loops

[51]. To compare with these structures, we take a numerical
approach to calculate the contributed three-loop integrals,
using packages FIESTA [52] and pySecDec [53]. The
evaluation of the nonplanar parts of these integrals turns
out to be highly involved. To overcome this difficulty, we
managed to organize the integrand into uniformly tran-
scendental integrals to the necessary extent, which signifi-
cantly improves the efficiency of computation; such a
simplification has also been observed in the four-loop
Sudakov form factor computation [54,55]. Our results give
consistent IR divergences, for both the planar [56] and
nonplanar parts [51,57]. Moreover, the three-loop planar
remainder for the form factor of trðϕ2Þ confirms the recent
bootstrap computation [44] (using also data from [58,59]).
All these provide strong consistency checks of our results.
Some details of the numerical checks are provided in the
Supplemental Material [47]. More details on the simplifi-
cation of the integrand and numerical computations will be
given in [60].
Discussion.—An interesting finding of this Letter is that

the integrand solutions contain a large number of free
parameters, while at the same time manifesting all dual
Jacobi relations. Practically, this is a very appealing
property for the high-loop construction using the CK-dual
ansatz. Such free parameters can be understood as defor-
mations of the integrand that do not change the final
form factor result. Below, we discuss the origin of these
deformations.
We first point out that the free parameters we find have

no relation to the traditional gauge transformations that
correspond to changing external polarization vectors as
εμi → εμi þ αpμ

i for arbitrary α. This is simply because the
loop corrections are independent of polarization vectors.
Another type of integrand transformation is the so-called

generalized gauge transformation (GGT) [7]. For example,
one can deform the numerators associated with s-, t-, and
u-channel trivalent graphs as

Ns → Ns þ sΔ; Nt → Nt − tΔ; Nu → Nu − uΔ;

ð8Þ

for arbitrary Δ without changing the amplitude or form
factor results. At loop level, such a transformation typically
breaks the dual Jacobi relations, since sþ tþ u ≠ 0,
see Fig. 2.
For form factors, a new type of generalized gauge

transformations appears, due to the insertion of local
operators. To illustrate this point, let us consider the simpler
two-loop, three-point form factor of trðϕ2Þ. In this case, we
find that the two-loop CK-dual representation (with min-
imal power counting) also contains four free parameters.
Consider the graphs in Fig. 8: the first two topologies share
the same color factor

FIG. 7. Master graphs for trðϕ3Þ form factor.
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Ca ¼ Cb; ð9Þ

since the color factor of the local operator trðϕ2Þ is a δ
function in color space. This implies that one can make a
deformation of the corresponding numerators as

Na → Na þ l2
AΔ; Nb → Nb − l2

BΔ; ð10Þ

which leaves the full integrand unchanged,

CaIa½l2
AΔ� − CbIb½l2

BΔ� ¼ ðCa − CbÞIc½Δ� ¼ 0: ð11Þ

Here Ia;b;c are integrals related to the topologies in Fig. 8.
Note that (10) has different color-algebraic origin from (8).
To distinguish these two transformations, we call (10) the
“operator-induced” GGT, while referring to (8) as the
“Jacobi-induced” GGT.
The high-dimensional solution space in the CK-dual

representation is closely related to the operator-induced
GGT for form factors. Indeed, in order to show that the
integrands in the solution space (with different choices of
the free parameters) are equivalent, one must apply the
color relations (9) and the operator-induced GGT for the
considered form factors. Explicit two-loop examples are
given in the Supplemental Material [47].
Finally, we recall that gravity amplitudes can be obtained

through a double copy of gauge amplitudes in the CK-dual
representation, where the Jacobi-induced GGT leads to
diffeomorphism invariance in gravity [32]. Given the CK-
dual solutions for form factors, one may ask if there is a
physical meaning of performing a double copy in this case.
In order to have a consistent double-copy result, where
color factors Ci are replaced by kinematic numerators Ñi,

X
i

CiNiQ
Di;α

⇒
X
i

ÑiNiQ
Di;α

; ð12Þ

the Ñi should satisfy all corresponding color relations,
including those operator-induced color relations such as in
the case of Fig. 8,

Ca ¼ Cb ⇒ Ña ¼ Ñb: ð13Þ

Otherwise, the free parameters in Ni will not cancel in the
double-copy result. We find that, for the two- and three-
loop, three-point form factors, there is no numerator

solution satisfying such a requirement. This implies that
the operator-induced GGT may not give diffeomorphism
invariance in gravity through double copy, which seems
consistent with the known fact that local diffeomorphism-
invariant operators do not exist in gravity. It would be
interesting to explore this point further, since the argument
here does not exclude the possibilities that the double-copy
picture may apply to form factors in special choices of
gauge, as well as their possible connections to certain
nonlocal observables in gravity.
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