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We propose a measure, which we call the dissipative spectral form factor (DSFF), to characterize the
spectral statistics of non-Hermitian (and nonunitary) matrices. We show that DSFF successfully diagnoses
dissipative quantum chaos and reveals correlations between real and imaginary parts of the complex
eigenvalues up to arbitrary energy scale (and timescale). Specifically, we provide the exact solution of
DSFF for the complex Ginibre ensemble (GinUE) and for a Poissonian random spectrum (Poisson) as
minimal models of dissipative quantum chaotic and integrable systems, respectively. For dissipative
quantum chaotic systems, we show that the DSFF exhibits an exact rotational symmetry in its complex time
argument τ. Analogous to the spectral form factor (SFF) behavior for Gaussian unitary ensemble, the DSFF
for GinUE shows a “dip-ramp-plateau” behavior in jτj: the DSFF initially decreases, increases at
intermediate timescales, and saturates after a generalized Heisenberg time, which scales as the inverse mean
level spacing. Remarkably, for large matrix size, the “ramp” of the DSFF for GinUE increases
quadratically in jτj, in contrast to the linear ramp in the SFF for Hermitian ensembles. For dissipative
quantum integrable systems, we show that the DSFF takes a constant value, except for a region in complex
time whose size and behavior depend on the eigenvalue density. Numerically, we verify the above claims
and additionally show that the DSFF for real and quaternion real Ginibre ensembles coincides with the
GinUE behavior, except for a region in the complex time plane of measure zero in the limit of large matrix
size. As a physical example, we consider the quantum kicked top model with dissipation and show that it
falls under the Ginibre universality class and Poisson as the “kick” is switched on or off. Lastly, we study
spectral statistics of ensembles of random classical stochastic matrices or Markov chains and show that
these models again fall under the Ginibre universality class.
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Introduction.—The study of spectral statistics is of
fundamental importance in theoretical physics due to its
universality and utility as a robust diagnosis of quantum
chaos [1,2]. While Bohigas, Giannoni and Schmidt con-
jectured that chaotic quantum systems exhibit spectral
correlation as those found in random matrix theory
(RMT) in the same symmetry class [2], Berry and Tabor
observed that integrable systems follow Poisson statistics
of uncorrelated random variables [3]. Both claims have
withstood the test of time, and in particular, the signature of
level repulsion has been found in a wide range of
disciplines, including nuclear resonance spectra [4], meso-
scopic physics [5,6], quantum chaos [7], black hole physics
[8–10], quantum chromodynamics [11,12], number theory
[13], information theory [14], and more.
Non-Hermitian physics has advanced significantly in

recent years in the study of optics [15–17], acoustics
[18,19], parity-time-symmetric systems [20,21], meso-
scopic physics [22–25], cold atoms [26,27], driven dis-
sipative systems [28–32], biological systems [33], and
disordered systems [5]. Recent studies on spectral proper-
ties have focused on the shape of eigenvalue density, the

spectral gap, and the spacing between nearest-neighbor
eigenvalues [34–48]. The goal of this Letter is to introduce
and analyze a simple indicator that characterizes the level
statistics of non-Hermitian matrices up to an arbitrary
energy scale (and, equivalently, timescale) and show that
it captures universal signatures of dissipative quantum
chaos. We treat the complex-valued spectrum as a two-
dimensional (2D) gas and introduce the dissipative spectral
form factor (DSFF) as the 2D Fourier transform of the
density-density correlator of complex eigenvalues, which
depends on a complex time parameter τ. We exactly
compute the DSFF for the GinUE and for a Poissonian
random spectrum (Poisson) as minimal models of dissipa-
tive quantum chaotic and integrable systems respectively.
In particular, we show that the DSFF for the complex
Ginibre ensemble (GinUE) exhibits a dip-ramp-plateau
behavior as a function of jτj, with an asymptotically
quadratic ramp, as opposed to the linear ramp in the
spectral form factor (SFF) for Gaussian ensembles of
Hermitian matrices. We demonstrate the universality of
these results by showing that they capture the level statistics
of a quantum kicked top model with dissipation and
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random classical stochastic matrices.We conjecture that, for
large enough complex time jτj, dissipative chaotic systems
have DSFF behavior that coincides with GinUE’s [49]. As
such, the DSFF solution for the GinUE provides an
important benchmark of a dissipative quantum chaotic
system and can be treated as a complex analog of the
SFF solution for the Gaussian unitary ensemble (GUE).
Spectral form factor.—It is instructive to review the

behavior of the SFF for closed quantum systems [50],
with which the DSFF shares several analogous features.
Consider a closed quantum system described by an N × N
Hermitian (or unitary) matrix with the density of states
(DOS) ρðEÞ ¼ P

n δðE − EnÞ, where En is the nth eigen-
level (or eigenphase). Note that, in our convention,R
dEρðEÞ ¼ N. The correlation between eigenlevels can

be quantified by the (so-called “2α point”) SFF, which is
the (αth power of the) Fourier transform of the two-level
correlation function hρðEÞρðEþ ωÞi, and can be directly
defined as

KαðtÞ ≔
DhX

n;m
e−iðEn−EmÞt

i
α
E
; ð1Þ

where h·i denotes the average over an ensemble of
statistically similar systems. Importantly, the SFF captures
correlations between eigenlevels at all scales, including the
level repulsion and spectral rigidity, while at the same time
it is one of the simplest nontrivial and analytically tractable
diagnostic of quantum chaos [51]. Furthermore, the SFF
has recently been shown to capture novel signatures of
quantum many-body physics like the deviation from RMT
behavior at early time (and, consequently, the onset of
chaos) [9,10,53–67]. For integrable systems with Poisson
statistics, we have K1ðtÞ ¼ N for t larger than a timescale
set by the inverse width of the DOS. For quantum chaotic
systems without symmetries, the generic behavior of the
SFF can be understood by studying the GUE. The SFF for
the GUE initially decays and then grows linearly until the
Heisenberg time tHei, after which KðtÞ ¼ N reaches a
plateau. Qualitatively, this is referred to as the dip-ramp-
plateau behavior. The form of the early time decay is due to
the (nonuniversal) form of the DOS, while the linear ramp
reflects the phenomenon of spectral rigidity. tHei is propor-
tional to the inverse of the mean level spacing, and it
encodes the largest physically relevant timescale of the
system.
Dissipative spectral form factor.—For an N × N non-

Hermitian matrix with complex spectra, the SFF is expo-
nentially growing or decaying in time due to the imaginary
parts of the complex eigenvalues. Moreover, traditional
methods like Green’s function approach fail due to non-
analyticity of Green’s function. To circumvent these prob-
lems, we consider 2D DOS, ρðzÞ¼P

nδðx−xnÞδðy−ynÞ,
where z ¼ xþ iy, xn ¼ Rezn, yn ¼ Imzn, and zn ¼ xn þ
iyn is the nth complex eigenvalue. We introduce the
(2α-point) DSFF as the ensemble average of the (αth
power of the) 2D Fourier transform of the two-level

correlation function hρðx; yÞρðxþ ω; yþ ω0Þi. We directly
define the DSFF as

Kαðt; sÞ ≔
DhX

m;n
eiðxn−xmÞtþiðyn−ymÞs

i
α
E
; ð2Þ

where t and s are two “time” variables conjugate to the xn −
xm and yn − ym, respectively. Importantly, the correlation
between both the real and imaginary parts of two given
complex eigenvalues nowcontributes to theDSFFas phases.
Notice that, if the spectrum is real, the DSFF is effectively
reduced to the SFF as a function of t for all s. To obtain an
intuition of how the DSFF behaves, we write z⃗mn ≡
ðxmn; ymnÞ≡ ðxm − xn; ym − ynÞ and τ⃗≡ ðt; sÞ ¼ ðjτj cos θ;
jτj sin θÞ. The DSFF can now be written as Kαðt; sÞ ¼
h½Pm;n e

iz⃗mn·τ⃗�αi, which allows a natural interpretation in
the complex plane: At fixed θ and as a function of jτj (2α
point), the DSFF is the (α point) SFF of the projection of
fzmg onto the radial axis specified by angle θ (illustrated in
Fig. 1, inset). Reverting back to the notation with complex
numbers, we define complex time τ ¼ tþ is and write the
DSFF as Kαðτ; τ�Þ ¼ hjPn e

iðznτ�þz�nτÞ=2j2αi. For ensembles
where the two-point correlation function hρðz1Þρðz2Þi is
known, the DSFF at α ¼ 1 can be written as an integral
K1 ¼

R
d2z1d2z2hρðz1Þρðz2Þieiðz1τ�þz�

1
τ−z�

2
τ−z2τ�Þ=2. For the

rest of the Letter, we will drop the subscript and focus on
the simplest and most relevant case, α ¼ 1.
Dissipative quantum chaotic systems.—We use the

GinUE as a minimal model of the dissipative qua-
ntum chaotic systems. The joint probability distri-
bution function of eigenvalues of the GinUE is known
exactly, and the correlation function of eigenvalues can
be expressed in terms of the kernel [68] Kðz1; z2Þ ¼
ðN=πÞe−ðN=2Þðjz1j2þjz2j2ÞPN−1

l¼0 ½ðNz1z�2Þl=l!�. The one-
point correlation function, i.e., the DOS, is given by
hρðzÞi ¼ Kðz; zÞ, and the kernel is normalized such thatR
d2zhρðzÞi ¼ R

d2zKðz; zÞ ¼ N. Note that the DOS is
isotropic and is asymptotically, as N → ∞, flat on a
unit disk jzj < 1 and vanishing outside. The two-point
correlation function is hρðz1Þρðz2Þi ¼Kðz1; z1Þδðz1 − z2Þþ
Kðz1; z1ÞKðz2; z2Þ− jKðz1; z2Þj2. We will refer to the above
three terms as the contact, disconnected, and connected
term, respectively. Using hρðz1Þρðz2Þi, we compute (2) by
expanding the exponential factors and using the fact that
the integrals over the phases of z1 and z2 kill all terms in the
sum except the ones depending on jz1j and jz2j. This gives

KGinUEðτ;τ�Þ¼NþN2
1F1

�
Nþ1;2;−

jτj2
4N

�
2

−
XN−1

n;m¼0

ðmaxðm;nÞ!Þ2
n!m!ðjm−nj!Þ2

× 1F1

�
maxðm;nÞþ1; jm−njþ1;−

jτj2
4N

�
2

;

ð3Þ
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where we have listed the three terms in the same ordering as
in the two-point correlation function. 1F1ða; b; zÞ ¼P∞

n¼0 a
ðnÞzn=bðnÞn! is the Kummer confluent hypergeo-

metric function, where aðnÞ is the rising factorial. Keeping
the leading contributions in N, Eq. (3) becomes

KGinUEðτ;τ�Þ¼NþN2
4J1ðjτjÞ2

jτj2 −N exp

�
−
jτj2
4N

�
; ð4Þ

where JμðxÞ is the Bessel function of the first kind. Along
with Eqs. (3) and (4) forms our main result, as they capture
the universal spectral correlations of dissipative quantum
chaotic systems. First, note that KGinUEðτ; τ�Þ only depends
on the absolute value of τ; i.e., the DSFF is manifestly
rotational symmetric in complex time (see Fig. 1). Second,
the qualitative behavior of the DSFF as a function of jτj for
dissipative quantum systems shows a dip-ramp-plateau
structure, analogous to the SFF for closed quantum
systems: At early time jτj≲ τedge, the DSFF dips from
Kð0; 0Þ ¼ N2 with a form dominated by the disconnected
piece (3); at intermediate time τedge ≲ jτj≲ τHei, the DSFF
increases quadratically KGinUE ≃ jτj2=4 with precise form
given by the sum of hypergeometric functions, or the
Gaussian function for large N, until it reaches late time
τHei ≲ jτj with τHei ∼

ffiffiffiffi
N

p
, where the DSFF reaches a

plateau at N. Note that the DSFF GinUE ramp behavior
is drastically different from the corresponding SFF GUE
behavior, which is linear in time. Third, in analogy to the
SFF, the connected term in the DSFF captures the spectral
rigidity in the complex spectral plane. As apparent from the
functional form of the connected term, we see that the
Heisenberg time scales as the inverse of mean level spacing
(in the complex plane), τHei ¼ OðΔ−1Þ ¼ Oð ffiffiffiffi

N
p Þ [69].

Again, this is in contrast to the corresponding Heisenberg
time scaling for the SFF, which scales as N. Fourth, the
nonoscillatory part of the disconnected term asymptotically
scales as N2jτj−3. Setting the time τedge, where disconnected
and connected contributions are of the same order, we find
τedge ¼ OðN2=5Þ. Note that, as a function of jτj, the GinUE
disconnected term of the DSFF coincides with the GUE
disconnected term of the SFF, due to the fact that the
projection of the DOS along the axis defined by θ exhibits a
semicircle shape, like the DOS of the GUE. Fifth, according
to the interpretation described above, the DSFF at fixed θ is
equivalent to the SFF of the projected spectrum fzmg along
the axis defined by θ. While there is level repulsion in the 2D
complex plane, there are accidental degeneracies between
distanced pairs of eigenvalues in the set of projected fzmg,
and remarkably, the lack of level repulsion along the
projection axis makes up for the difference between the
SFF of the GUE, which has a linear ramp in t with
tHei ¼ OðNÞ, and the DSFF of the GinUE, which has a
quadratic ramp in jτj with τHei ¼ Oð ffiffiffiffi

N
p Þ.

Finally, the GinUE DSFF result can be interpreted via the
mapping between the GinUE and 2D log-potential
Coulomb gas. the DSFF is equivalent to the 2D static
structure factor (SSF), defined as the Fourier transform of
density-density fluctuation, where the complex energy and
the complex time in (2) take the roles of position and wave
vector k⃗. For the Coulomb gas, with the assumption of
“perfect screening,” SSF is argued to have an asymptotic
behavior of jk⃗j2 for small jk⃗j [70], which is consistent with
the quadratic increase jτj2 for large N in (4). Furthermore, a
system is “hyperuniform” if its SSF vanishes as jk⃗j tends to
zero. This implies that density fluctuation is suppressed at
very large length scales [71,72]. This leads us to interpret
that the spectrum of the GinUE is a 2D gas that displays
hyperuniformity with a quadratic power-law form.
The numerical data and analytical solutions are plotted in

Fig. 1 for N ¼ 256 with excellent agreement. We further
computed the DSFF for the real (GinOE) and quaternion
real (GinSE) Ginibre ensembles [69]. The rotational sym-
metry of K in τ is broken, since eigenvalues of quaternion
real (real) ensemble (are either real or) come in complex
conjugate pairs, which leads to special behavior of zmn near
θ ¼ 0, π=2 [69]. We define critical angles θ�0 and θ�π=2 such
that the DSFF of the GinOE and GinSE coincide with the
one of the GinUE for θ ∈ ½θ�0; π=2 − θ�π=2�. We numerically
show and heuristically argue that θ�ϕ ∝ N−1=2 with the only
exception of θ�π=2 ∝ N−0.56 for the GinSE due to the lack of

FIG. 1. Kðτ; τ�Þ vs jτj for the GinUE and a Poissonian random
spectrum [defined above (5)] with matrix size N ¼ 256. Writing
τ ¼ jτjeiθ, numerical simulations of the GinUE (Poisson) for
fixed θ ¼ 0 to θ ¼ π=2 in steps of π=4 are plotted in blue colors
(red colors) in multiple shades. The analytical solutions of KGinUE
[Eq. (3)] and KPoi [Eq. (5)] are plotted as the purple and green
lines on top of the numerical data. The connected part of KGinUE
[first and third terms in Eq. (3)] is plotted as the orange line. Inset:
two-dimensional histogram of fzmn ≡ zm − zng of the GinUE for
N ¼ 1024, where increasing values are plotted with deeper blue
colors. Note that the bin at the origin is occupied by N (diagonal)
contributions of fznn ¼ 0g, and there is a dip around the origin
due to level repulsion. The computation of the DSFF for fixed θ
as a function of jτj is equivalent to the computation of the SFF as
a function of jτj of fzmg projected onto the axis defined by θ. The
sample sizes are 5000 and 2000 for Poisson and the GinUE,
respectively.
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“projected degeneracies” [69]. We therefore conclude that,
in large N, the GinOE and GinSE coincide with the GinUE
behavior except for the angle θ ¼ 0 and π=2. This is
consistent with the fact that spectral correlations of these
ensembles coincide with the GinUE for eigenvalues away
from the real axis [73–77].
Dissipative integrable systems.—Wemodel the spectrum

of dissipative quantum integrable systems with a set of
uncorrelated normally distributed complex eigenvalues.
The DOS is hρðzÞi¼Nð2πÞ−1e−jzj2=2 with R

d2zhρðzÞi¼N.
The two-point correlation function is hρðz1Þρðz2Þi ¼
hρðz2Þiδðz1 − z2Þ þ ½NðN − 1Þ=N2�hρðz1Þihρðz2Þi. The
DSFF can be evaluated as

KPoiðτ; τ�Þ ¼ N þ NðN − 1Þe−jτj2 : ð5Þ

We see that the DSFF for a Poissonian random spectrum
takes a constant value of N except for a small region of
complex time near the origin. The constant valueN is due to
the diagonal contribution from the DSFF, and the deviation
from N is due to the disconnected part and depends on the
details of the DOS. The numerical data and analytical
solution are plotted in Fig. 1 for N ¼ 256 with excellent
agreement.
Dissipative quantum kicked top model.—A simple but

rich example of quantum systems that exhibit chaotic and
integrable behaviors is the quantum kicked top (QKT)
model [78–80], which has been experimentally realized in
[81]. The unitary evolution of the QKT is governed by the
Hamiltonian [78],

HðtÞ ¼ pJz þ
k0
2j

J2z þ
k1
2j

J2y
X∞

n¼−∞
δðt − nÞ; ð6Þ

where J⃗ ¼ ðJx; Jy; JzÞ are angular momentum operators
that act on a single spin-j particle and obey
½Jα; Jβ� ¼ iϵαβγJγ, α; β; γ ∈ fx; y; zg. The first two terms
describe the precession of the spin. The third term describes
a periodic kick at integer time n. We introduce the
dissipation by considering the action of the quantum
map in the Kraus form ΦðρÞ ¼ P

a Kae−iHρeiHK
†
a, where

K1;2 ¼ ðJx � iJyÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

and K3 ¼
ffiffiffi
2

p
Jz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

such that the constraint
P

a K
†
aKa ¼ 1 is satisfied to ensure

trace preservation and complete positivity [82]. The time
evolved density matrix is obtained by a successive action
of Φ, i.e., ρðtÞ ¼ ΦtðρÞ. We represent Φ as a super-
operator; i.e., Φ ¼ P

aðKa ⊗ K�
aÞðU ⊗ U�Þ, where U ¼

T exp½−i R 1
0 dtHðtÞ� and T is the time ordering. Note that

the total angular momentum J⃗2 and the parity are conserved
and we will therefore study the restricted Hilbert space of
size roughly half of ð2jþ 1Þ2. We analyze the DSFF of the
spectrum of Φ in the symmetric subspace. Note that the
spectrum is symmetric across the real axis [69]. As shown

in Fig. 2, as we turn on and off the kick parameter k1, the
DSFF coincides with the GinOE (for all angles [69]) and
Poisson behavior with excellent agreement. Note that the
DSFF of the corresponding Liouvillian operators of the
Lindblad form of the QKT also converges to GinOE DSFF
behavior.
Classical stochastic systems.—Another interesting class

of non-Hermitian matrices are classical stochastic matrices
or Markov chains, which are matrices with real positive
entries and with each column summing to unity. A
particular way to generate an ensemble of random sto-
chastic matrices is to consider matrix S with entries
Sij ¼ jMijj2=

P
i jMijj2, whereMij is a matrix chosen from

FIG. 2. DSFF of QKT with dissipation for j ¼ 35 and Gaus-
sianly distributed p ∈ N ð2; 2=3Þ and k0 ∈ N ð10; 3Þ. The blue
(red) lines in different shades are for the DSFF of QKT with the
kick with k1 ¼ 8 (without the kick with k1 ¼ 0) for fixed θ ∈
½π=16; 7π=16� in steps of π=16. The two cases fit the connected
part of GinUE (orange line) and Poisson (green line) predictions
as expected. Inset: DSFF of QKT and GinOE for angles θ ¼ 0,
π=2 [69]. The sample sizes for QKTwith and without the kick are
2500 and 4300, respectively.

FIG. 3. DSFF of the random classical stochastic ensemble
induced by CUE for N ¼ 1024 with sample size 5000. The blue
colors are for fixed θ ∈ ½π=16; 7π=16� in steps of π=16. The data
can be fitted with the connected part of the GinUE (orange line).
Inset: DSFF for CS and GinOE at angles θ ¼ 0, π=2 [69].
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a certain matrix ensemble. We consider classical stochastic
(CS) matrices induced from two random ensembles: the
circular unitary ensemble (CUE) (whose induced stochastic
ensemble is called the unistochastic ensemble) and the
GinUE. Unistochastic matrices arise in the context of
quantum graphs [83–85] and in the theory of majorization
and characterization of quantum maps [86–89]. By the
Perron-Frobenius theorem, the stochastic matrices have
leading eigenvalues of unity, and the spectra are again
symmetric across the real axis [69,90]. We plot the DSFF
for the unistochastic ensemble in Fig. 3 and the other
GinUE-induced ensemble in the Supplemental Material
[69]. For both ensembles, the DSFF behavior coincides
with the GinOE behavior (for all angles [69]) with excellent
agreement.
Discussion.—We have proposed and exactly computed

the DSFF for the GinUE and a Poissonian random
spectrum as minimal models of dissipative quantum chaotic
and integrable systems. In particular, we show that the
DSFF for the GinUE has a dip-ramp-plateau behavior with
a quadratic ramp and numerically demonstrated the uni-
versality of the result with the example of the QKT and
random classical stochastic ensembles. This Letter opens
up many exciting directions: the DSFF can be used to
classify dissipative quantum chaotic systems in different
universality and symmetry classes, beyond the nearest-
neighbor spacing distribution studied previously [91–94],
and to unveil deviation of open quantum many-body
systems from RMT behaviors at early time (cf. [53–63]).
In particular, it can be used to investigate the spectral
properties across the measurement-induced phase transition
[95–101]. These directions will be discussed in an upcom-
ing work [49].
Finally, note that the DSFF contrasts with a related

observable called the dissipative form factor [35] (DFF) in
several ways: the DFF is a one-parameter function defined
for the (Lindblad) superoperators, and the correlation
between the imaginary parts of eigenvalues contribute to
the DFF as an exponential factor (as supposed to a phase in
the DSFF). This makes the DFF useful in capturing the
scaling of the spectral gap, while the DSFF is beneficial in
unraveling the correlation between eigenvalues in the bulk
of the spectrum.
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