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Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-
body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-
body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a
local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics
with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the
protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent
agreement of the EHwith Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a
direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a
topological phase.
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Introduction.—Significant progress has been made in
developing quantum simulation hardware [1,2]. In atomic
physics, analog quantum simulators for Bose and Fermi
Hubbard models are realized with ultracold atoms in optical
lattices [3–10], and spin models can be implemented with
Rydberg tweezer arrays [11–13] and trapped ions [14,15].
Anotable recent development is spatial and temporal control,
allowing addressing of single lattice sites, and single-shot,
single-site readout of atoms [1,2], e.g., as spin and density
resolved measurements with a quantum gas microscope
[16,17]. The generic many-body Hamiltonian realized in
analog quantum simulators has a (quasi-) local structure,
ĤðgÞ ¼ P

i giĥi, where the ĥi act nontrivially on spatially
contiguous sites i as few-body operators. Achieving local
control thus implies tunability of the spatial couplings gi.
Analog quantum simulators are, therefore, capable of not
only realizing homogeneous, i.e., “in-bulk” translationally
invariant Hamiltonians Ĥ ¼ P

i ĥi, but a whole family of
spatially deformed Hamiltonians ĤðgÞ with a spatiotempor-
ally programmable pattern g≡ fgig. This programmability
provides us with opportunities to design specific classes of
quantum protocols, running on the quantum simulator, to
achieve tasks of interest in quantum many-body physics.
Below we describe a protocol based on a hybrid

classical-quantum algorithm [18] to learn the entanglement
Hamiltonian (EH) of a subsystem A of a quantum many-
body state [see Eq. (1)]. In the protocol, a deformed

Hamiltonian Ĥvar
A ðgÞ plays the role of an Ansatz for the

EH, where g represents a small set of variational parameters
scaling polynomially with the system size. These are
determined efficiently in a quantum feedback loop from
monitoring the time evolution of certain local, experimen-
tally accessible observables evolving under Ĥvar

A ðgÞ. As
outlined in Fig. 1(a), our protocol differs from classical
learning (CL) methods [19–22] by implementing a quan-
tum processing step through time evolution with the
deformed Hamiltonian, acting in situ on the quantum state
stored in quantum memory of the quantum simulator. A
unique feature of the present setting is that the learned EH
is also available as a physical Hamiltonian on the quantum
device for further experimental studies, such as, e.g.,
determining the entanglement spectrum (ES) through
spectroscopy. This is in contrast to tomography-based
methods [23,24], where the ES is obtained by diagonalizing
the (learned) EH on a classical computer.
We emphasize that by devising variational quantum

algorithms in the framework of analog simulation we build
on existing, scalable and high-fidelity quantum hardware,
capable of realizing physically motivated variational
Ansätze for the EH. As illustrated below, this hardware
efficiency includes the ability to represent fermions in
Hubbard models naturally as fermionic atoms and asso-
ciated fermionic quantum operations. While digital algo-
rithms [25–31] offer, in principle, a broader scope of

PHYSICAL REVIEW LETTERS 127, 170501 (2021)

0031-9007=21=127(17)=170501(7) 170501-1 © 2021 American Physical Society

https://orcid.org/0000-0002-8867-360X
https://orcid.org/0000-0003-3549-7160
https://orcid.org/0000-0001-6781-2079
https://orcid.org/0000-0001-5338-4181
https://orcid.org/0000-0002-0979-2521
https://orcid.org/0000-0003-4014-1505
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.170501&domain=pdf&date_stamp=2021-10-22
https://doi.org/10.1103/PhysRevLett.127.170501
https://doi.org/10.1103/PhysRevLett.127.170501
https://doi.org/10.1103/PhysRevLett.127.170501
https://doi.org/10.1103/PhysRevLett.127.170501


applicability, they come in general with the significant
hardware requirement of a freely programmable quantum
computer and involve a technical overhead for realizing
fermionic models.
Ansatz for EH as deformed Hamiltonian.—The entan-

glement Hamiltonian (EH) H̃A and the collection of its
eigenvalues fξαg, the entanglement spectrum (ES), are
central to our understanding of complex quantum states as
they completely characterize all correlations in a subsystem
A. Given a many-body state ρ̂, they are related to the
reduced density matrix on A via

ρ̂A ≡ Tr¬A½ρ̂�≡ expð−H̃AÞ ¼
X

α

e−ξα jΦα
AihΦα

Aj: ð1Þ

The ES can distinguish different quantum phases, e.g., its
low-lying part reflects the structure of the conformal field
theory (CFT) describing edge excitations in a topological
phase [32,33]. Moreover, the EH plays a key role in the
holographic approach to geometry emerging from entan-
glement [34].
In many physically relevant cases, H̃A is a deformation

of the system Hamiltonian Ĥ. A seminal example is
provided by the Bisognano-Wichmann (BW) theorem of
local quantum field theory (QFT) [35]. It states that the EH
for the ground state of a relativistic QFT and a subsystem A
defined by x1 > 0 is given by H̃A ¼ R

x∈A dxβðxÞĤðxÞ þ c.

Here ĤðxÞ is the energy density of Ĥ, c is a normalization
constant, and the EH is parametrized by a local “inverse
temperature” βðxÞ ¼ 2πx1, taking the form of a linear
ramp. We emphasize that the BW theorem holds in
arbitrary spatial dimensions [36]. Remarkably, BW-like
deformations also provide excellent approximations for the
EH of the ground state in a variety of lattice models
[39–42]. Based on this observation, Ref. [43] proposed
that, assuming the validity of a lattice version of the BW
theorem, the BW-deformed Hamiltonian can be physically
realized and probed in quantum simulation experiments. In
contrast, our hybrid classical-quantum learning algorithm
explicitly finds the optimal variational approximation for the
EH among a class of deformed system Hamiltonians.
Protocol.—The key ingredient of the algorithm is the

capability of the quantum simulator to realize unitary
evolution under deformed Hamiltonians Ĥvar

A ðgÞ ¼P
j⊂A gjĥj, acting for some time t on a subsystem of interest

A. As illustrated in Fig. 1(a), we first prepare a desired
quantum state, then evolve the subsystem according to
Ĥvar

A ðgÞ, and monitor the evolution of local observables
ÔA in the subsystem,

hÔAit ≡ TrA½ÔAe−iĤ
var
A ðgÞtρ̂AeiĤ

var
A ðgÞt�: ð2Þ

The classical-quantum feedback loop consists in finding
an optimal set gopt by minimizing the time variation of the
observables, i.e., we wish to enforce hÔAit ¼ const. In
practice, we achieve this by minimizing a cost function
CðgÞ ¼ P

t∈T;ÔA∈O ðhÔAit − hÔAi0Þ2, where T ¼ ftig
denotes a set of observation times. The precise choice of
observables ÔA is not critical for our protocol, as we expect
the quantum dynamics to scramble them into complex
many-body operators as long as ½ÔA; Ĥ

var
A ðgÞ� ≠ 0. Thus,

monitoring a small number of local observables at different
observation times ftig provides a sufficient number of
constraints for the algorithm to find an optimal variational
approximation to the EH. This is efficient in view of the
quasilocal Ansatzwith a small set of variational parameters,
and we refer to the Supplemental Material [44] for a
detailed technical discussion, including the choice of
observables and the role of conservation laws.
We note that the EH is obtained from Eq. (2) only up to a

scale factor and an overall shift, H̃var
A ¼ βĤðgoptÞ þ c, i.e.,

the ES is determined as universal ratios, κα ¼ ðξα − ξα0Þ=
ðξα1 − ξα0Þ. As discussed in the Supplemental Material [44],
which includes Refs. [37,45–48], these scale factors can be
determined in additional steps.
Learning the EH of ground states of the Fermi-Hubbard

model.—We now demonstrate the quantum EH learning
protocol for the Fermi-Hubbard model (FHM). The FHM is
a paradigmatic model in condensed matter physics for a
strongly interacting quantum many-body system, and in
two spatial dimensions (2D) is central to studies of

FIG. 1. Quantum variational learning (QVL) of EH (a) sub-
system A is time evolved with the deformed Hamiltonian Ĥvar

A ðgÞ,
while measuring observables hÔAit at time instances ftng. A
classical computer optimizes a cost function CðgÞ in a feedback
loop, minimizing the time variation of observables. (b) Fermi
Hubbard model, and subsystem A. (c) Time variation of ob-
servables indicating convergence in the feedback loop from the
initial g0 to final gopt parameters. (d) Corresponding cost function
vs iteration number of the optimizer. The color map visualizes the
distance to the final parameter vector Δg ¼ jgi − goptj. Data
plotted in (c) and (d) were obtained in simulated runs for a
2-leg Fermi-Hubbard ladder [see text and Figs. 2(a) and 2(b)],
monitoring double site occupancy by means of a quantum gas
microscope.

PHYSICAL REVIEW LETTERS 127, 170501 (2021)

170501-2



high-temperature superconductivity. The FHM is described
by the Hamiltonian

ĤFHM ¼ −J
X

hjki;σ
ðĉ†jσ ĉkσ þ H:c:Þ

þU
X

j

n̂j↑n̂j↓ − μ
X

jσ

n̂jσ; ð3Þ

with ĉjσ (ĉ
†
jσ) destruction (creation) operators for fermions

on lattice site j with spin σ ¼ f↑;↓g. The first term
describes hopping of particles with tunneling strength J
between neighboring sites hjki, the second term represents
an on-site interaction with strength U with densities
n̂jσ ¼ ĉ†jσ ĉjσ, and the last term involves chemical potentials
μσ . The FHM is realized in state-of-the-art quantum
simulators employing fermionic atoms trapped in optical
lattices [5–8].
We illustrate quantum variational learning (QVL) of the

EH structure for the FHM with two examples (see Fig. 2).
The first example considers a 1D chain with subsystem A
on the right boundary [Fig. 2(a)]. The second example is a
two-leg ladder, which is cut horizontally defining A as the
lower leg [Fig. 2(b)]. For the two-leg ladder, we consider a
slight modification to the FHM with anisotropic hopping
J → Jk; J⊥ between horizontal and vertical links, respec-
tively. In both FHM examples, we assume the total system
is in its ground state with half filling, and in the zero
magnetization sector. As an Ansatz for the deformed
Hamiltonian to be learned for these examples, we choose
ĤvarðgÞ ¼ P

j∈A gjĥj, defined on a subsystem A, with
quasilocal operators centered on lattice site j:

ĥj ¼ −
X

k∈hjki∩A

X

σ

J
2
ðĉ†jσ ĉkσ þ H:c:Þ þ Un̂j↑n̂j↓ − μ

X

σ

n̂jσ;

ð4Þ

where for the horizontally cut ladder, J ¼ Jk. We note that

for the full system, ĤFHM ≡P
j ĥj, and that the ansatz

ĤvarðgÞ ¼ P
j∈A gjĥj can thus be viewed as a discretized

lattice version of the BW deformation, as originally defined
in the continuum. Realizing such a deformed Hamiltonian
in the laboratory requires local control over the
Hamiltonian parameters J, U, and μσ , which can be
achieved, e.g., by using digital mirror devices to shape
optical potentials [49], and through Raman induced laser
couplings [50]. Alternatively, time evolution with a
deformed Hamiltonian can also be naturally implemented
as digital quantum simulation, achieved with spatially
homogeneous Hamiltonians acting for short times on
properly chosen subregions of A (see Supplemental
Material [44]).
We numerically simulate the full protocol of determining

the EH (Fig. 1), including quantum projective measurements

and variational optimization with an adaptive DIRECT
algorithm, as used in Ref. [15], constraining the total number
of experimental runs to 6 × 104. As observables to be
monitored, we choose the double occupancy on lattice sites
for the first example [51], and for the second example local
tunneling elementsJ σ

j;jþ1 ¼ ĉ†jσ ĉjþ1;σ þ H:c:, which can be
accessed by inducing superexchange oscillations accompa-
nied by site-resolved measurements in a quantum gas
microscope [52,53].
For the 1D Hubbard chain, Fig. 2(c) shows the optimized

parameters gopt, consistent with the BW expectation of an
approximately linear ramp, but bending over to a parabolic
shape due to boundary effects. For the two-leg FHM with
horizontal cut, Fig. 2(d) shows the learned deformation as
approximately flat, again in agreement with a minimal
version of BW.We can understand this result perturbatively
in the limit U ≫ J⊥=k for J⊥ ≫ Jk. In this case, following
Ref. [54], the EH is proportional to the system Hamiltonian
restricted to a single leg of the ladder.

(a)

(c) (d)

(e) (f)

(b)

FIG. 2. Quantum variational learning (QVL) of the EH for
different geometries of a Hubbard model. Left column: Results
for a 5-site subsystem on the right boundary of a 10-site Hubbard
chain with U=J ¼ 1 and μ=J ¼ −0.5. Right column: Results for
a single chain in a 2-leg ladder with U=Jk ¼ 8, J⊥=Jk ¼ 2 and
μ=J ¼ 0. (a),(b) Lattice geometries with highlighted subsystems.
(c),(d) Variational parameters goptj obtained from optimization
with 6 × 104 experimental runs (QVL), fixing gj¼1. The optimal
parameters are rescaled (corresponding fidelities shown in Fig. 3)
for comparison with the EH parameters obtained by numerically
optimizing the relative entropy (black solid lines, see also
Supplemental Material [44]). (e),(f) Universal ratios κα calculated
by diagonalizing the variationally obtained EH Ĥvar

A ðgoptÞ in
comparison to exact eigenvalues of the reduced density matrix ρA.
All simulations are performed for the ground state in the
zero magnetization sector. Error bands are computed by repeating
the entire optimization run 10 times and computing the
standard error.
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Having learned the operator structure of the EH
ĤvarðgoptÞ ¼ P

j g
opt
j ĥj, and having a realization of the

EHavailable as physicalHamiltonian on thequantumdevice,
we can proceed to extract entanglement properties encoded
in the EH with both classical or quantum (on device)
postprocessing. Below we focus on the entanglement spec-
trum, which is obtained either by diagonalizing the EH
classically, or via “on device” spectroscopy, which poten-
tially scales to regimes beyond classical postprocessing.
Classical postprocessing of the EH.—Figures 2(e) and

2(f) show universal ratios κα obtained by diagonalizing the
learned EH. The results compare favorably to the exact
values within 2σ error bands. To further quantify the
performance of the EH reconstruction, we compare in
Fig. 3(b) the Uhlmann fidelity F ½ρ̂varA ðgÞ; ρ̂A� [55] of the
reconstructed state ρ̂varA ðgÞ with respect to the exact density
matrix ρ̂A as a function of the total number of experimental
runs. The analysis is performed for a 5-site subsystem on
the right boundary of a 10-site Hubbard chain as depicted
in Fig. 3. We present results for a parametrization of the
form Ĥvar

A ðgÞ ¼ P
j∈A gjĥj, with operators ĥj as defined in

Eq. (4), which reaches fidelities close to 1 with a remark-
ably small number NM ∼Oð104Þ of experimental runs. In
our numerical experiments, we initialize each variational
search with a random parameter vector g0.
The blue curve in Fig. 3(b) shows the behavior of the

Uhlmann fidelity for a classical protocol to learn the EH as
developed by Ref. [19] for system Hamiltonians, which we
adapt here to EHs. This approach is based on measuring
local observables ÔA which involve next- and next-next-
nearest neighbor atomic currents (see Supplemental
Material [44]). This is in contrast to QVL, where

measurement of nearest-neighbor currents and local den-
sities is sufficient. Figure 3 shows results, where we
estimate the scaling with a finite number of runs NM by
adding independent Gaussian noise to the observables OA,
with zero mean, and variance ϵ2 ¼ VarðOAÞ=NM (see
Supplemental Material [44] for details). While QVL is
bound to the restriction of implementing deformed
Hamiltonians on the quantum device, convergence is
achieved significantly earlier compared to CL. We note
that for CL the number of experimental runs may be
reduced by a factor ∼NA by grouping operators OA into
commuting sets which can be measured simultaneously.
On-device entanglement spectroscopy.—The realization

of the EH as a physical Hamiltonian on the quantum device
allows measurement of the ES via spectroscopy [43]
(see also Ref. [56]). Below we illustrate such a quantum
postprocessing step and simulate entanglement spectros-
copy. To this end, we evolve the reduced system ρ̂A once
again, but now with a perturbation added to the EH,
Ĥvar

A ðgoptÞ þ ϵĤ0. For an appropriately chosen weak per-
turbation ϵĤ0, the subsystem’s response exhibits a quantum
beat pattern with frequencies ∝ ðξα − ξβÞ that can be
extracted by extrapolating ϵ → 0.
For simplicity, we consider the FHM on a ladder

geometry [see Fig. 4(a)] in the limit of large on-site
interaction U ≫ J, where it reduces to the Heisenberg
model described by the Hamiltonian

FIG. 3. Error assessment vs number of experimental runs NM:
Maximally achievable Uhlmann fidelity with respect to the exact
density matrix ρ̂A as a function of the total number of measure-
ments for a half-partition of a 10-site Hubbard chain (NA ¼ 5) for
U=J ¼ 1 as shown in the inset. For comparison, the blue data
points represent a learning protocol based on classical postpro-
cessing of measurement data [19]. The data show the median of
the fidelity when the experiment is repeated 100 times. We plot a
selection of representative error bars which indicate 2σ con-
fidence intervals.

FIG. 4. Entanglement spectroscopy of the Heisenberg model on
a ladder. (a) Schematic of the setup, with subsystem A the right
half of a 12-site ladder. We fix the ratio of horizontal to vertical
couplings as Jk=J⊥ ¼ 0.25 and tune the relative strength of
diagonal and vertical couplings with λ ∈ ½0; 1�. (b) Level scheme
of the low-lying part of the entanglement spectra, indicating the
dominant transitions illustrated here for ϵ ¼ 0. (c) Measured
entanglement spectrum (see main text), for small values ϵ of the
perturbation, in the trivial phase (λ ¼ 0). (d) Same as (c) at λ ¼ 1.
(e) Measured entanglement spectra versus λ, at ϵ ¼ 0.05J̄⊥. All
spectra are computed assuming 5000 measurements per observ-
able at each time, measured up to t ¼ 1000=J̄⊥.
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Ĥ ¼
X

hiji
ĥij; ĥij ¼ J̄

X

a¼x;y;z

σ̂ai σ̂
a
j ; ð5Þ

with the sumrunningover neighboring sites on the ladder and
we abbreviated J̄ ¼ J2=ð2UÞ. We first apply our protocol to
find an optimal EH, Ĥvar

A ðgoptÞ ¼ P
hijiA g

opt
ij ĥij, for the

subsystem A indicated in Fig. 4(a)). The expected level
structure of the corresponding ES is shown in Fig. 4(b). In
order to induce transitions that resolve the degeneracy of the
low-lying levels, we then evolve with the learned EH
perturbed by a local magnetic field, Ĥ0 ¼ P

i0¼1;2 B⃗i0 ·
ˆσ⃗i0 ,

supported on the two sites i0 ¼ 1, 2 at the edge of the
entanglement cut indicatedby the red circles inFig. 4(a),with
B⃗1 ¼ ð1; 0; 1Þ and B⃗2 ¼ ð1; 0;−1=2Þ.
We probe the response of the system bymeasuring fðtÞ ¼

hPj∈Að−1Þjxþjy σ̂zjðtÞi and plot the corresponding discrete
cosine transformed spectrumFðνÞ in Fig. 4(c). The dominant
lines correspond to transitions between the ground state and
the first three excited states of H̃A. Beating between excited
states is significantlyweaker due to the thermal occupation in
the state ρ̂A ¼ exp ð−H̃AÞ. Our results clearly demonstrate
that thevalues ξ1;2;3 − ξ0 canbeobtained by extrapolating the
peak positions to ϵ ¼ 0. Importantly, the Zeeman-type
splitting provides a clear resolution of the threefold degen-
eracy. In an experiment, the ability to resolve this splitting
will be limited by the coherence time of the device.
Measuring the ES and resolving its degeneracies con-

stitutes a powerful tool to distinguish different quantum
phases and identify topological order. Motivated by a recent
experiment [57], we demonstrate this possibility in a
generalized model, where we decrease the interleg cou-
plings

ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
J̄⊥ while increasing new diagonal terms with

strength λJ̄⊥, as indicated by the dashed and dotted links in
Fig. 4(a). This situation can be realized experimentally by
displacing the two legs along the longitudinal direction,
thereby smoothly interpolating between the previous analy-
sis at λ ¼ 0 and a Haldane phase at large λ. According to the
Li-Haldane conjecture [58], this topological phase can be
directly detected with the ES by counting the degeneracy of
the ground state of H̃A. The simulated spectrum in Fig. 4(d)
shows six dominant transition lines merging at ν ≈ 0 as
ϵ → 0, which is a direct signature of the expected fourfold
degeneracy of the ground state of H̃A in the thermodynamic
limit (in the zero magnetization sector). Finally, we sweep λ
from 0 to 1, as illustrated in Fig. 4(e), where the structure of
resonant peaks shifts to ν ¼ 0. This directly reflects the
expected changes of theES [cf. Fig. 4(b)], demonstrating that
the on-device entanglement spectroscopy enables us to probe
the transition from the trivial to the topological phase.
Outlook.—Quantum variational learning provides a uni-

versal experimental tool set in the ongoing experimental
effort to characterize novel equilibrium and nonequilibrium
quantum phases [13] via their entanglement structure.
Entanglement data obtained in the present framework

can serve as input for further classical analysis, e.g., to
train machine learning algorithms to identify quantum
phases [59]. The fact that the optimization is performed
on device is a key feature of our protocol, which not only
enables the subsequent spectroscopy, but also provides
robustness against potential miscalibration of the exper-
imental setup. Additionally, since our cost function is built
from local observables, we expect the optimization to
behave favorably under the barren plateau problem [60],
though further investigations are required.
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