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1Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers, CNRS, (UMR 7538), F-93430 Villetaneuse, France
2Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, D-18059 Rostock, Germany

(Received 31 March 2021; accepted 7 September 2021; published 19 October 2021)

At nanometer separation, the dominant interaction between an atom and a material surface is the
fluctuation-induced Casimir–Polder potential. We demonstrate that slow atoms crossing a silicon nitride
transmission nanograting are a remarkably sensitive probe for that potential. A 15% difference between
nonretarded (van der Waals) and retarded Casimir–Polder potentials is discernible at distances smaller than
51 nm. We discuss the relative influence of various theoretical and experimental parameters on the potential
in detail. Our work paves the way to high-precision measurement of the Casimir–Polder potential as a
prerequisite for understanding fundamental physics and its relevance to applications in quantum-enhanced
sensing.
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The Casimir–Polder (CP) interaction between an atom or
molecule and polarizable matter [1] has been intensively
studied theoretically as a fundamental electromagnetic
dispersion force [2,3]. It originates from quantum fluctua-
tions of the electromagnetic field that spontaneously polar-
izes otherwise neutral objects. Interaction strength and
spatial dependence are the result of a unique combination
of atom species, internal atomic state and material proper-
ties and geometry. The Casimir–Polder interaction is part
of a larger family of fluctuation-induced electromagnetic
forces that also include the well-known Casimir force [4]
that has been studied, e.g., between a metallic sphere and a
nanostructured surface [5,6]. Historically, and rather con-
fusingly, the nonretarded regime with UvdWðzÞ ¼ −C3=z3

is sometimes called the van der Waals (vdW) potential
in order to distinguish it from the retarded (or Casimir-
Polder) regime, which asymptotically converges to
UretðzÞ ¼ −C4=z4 at a large distance from the surface z.
In the current usage, the Casimir-Polder interaction con-
sistently refers to the dispersion interaction between a
microscopic (atom or molecule) and a macroscopic object
independent of the distance regime.
Pioneering work with Rydberg atoms [7] predominantly

probed the nonretarded regime even at atom-surface dis-
tances as large as 1 μm due to major contributions from
atomic transitions in the mid-IR. On the other hand, when
the atomic transitions are in visible or near UV regions—
such as for atoms in their ground states—the atom-surface
interaction will be in the CP regime. This scenario is
relevant for ground-state atomic beams [8], cold atoms near
atomic mirrors [9], and quantum reflection [10]. Very few
experiments thus far have studied the crossover regime
where neither limit holds, typically using an adjustable

repulsive dipolar force [11]. Studying atom-surface inter-
actions with reasonable accuracy is of major importance as
these fundamental fluctuation-induced interactions have
not been yet measured with an accuracy better than 5–10%
whatever the experimental approach.
In this Letter, we present our experimental and theoretical

investigations of matter-wave diffraction of metastable argon
atoms by a transmission nanograting at atom-surface dis-
tances below 51 nm. The geometric constraint on the atom-
surface distance provided by the two adjacent walls is a
major asset that eliminates the quasi-infinite open space over
a single surface, similar to an ultrathin vapor cell [12]. Atom-
surface interactions have previously been studied using
transmission nanogratings with atoms at thermal velocities
[13,14]. This Letter shows that lowering the atomic beam
velocity below 26 ms−1 opens up new experimental oppor-
tunities due to larger interaction times, and produces
diffraction spectra dominated by the atom-surface interaction
[15]. The precise control of nanograting geometry and
experimental parameters related to the atom beam leads
us to observe the minute influence of retardation. This paves
the way to accurate CP potential measurements that can be
compared against detailed theoretical models.
Transmission gratings etched into a 100 nm thick silicon

nitride (Si3N4) membrane are commonly made using ach-
romatic interferometric lithography [16] using UV light,
resulting in gratings with pitch down to 100 nm covering
areas of several mm2. For its versatility in nanograting
design, we chose electron beam lithography to pattern a new
generation of resists with high selectivity during etching and
low line edge roughness [17]. A 200 nm-period transmission
nanograting has been fabricated on a 100 nm thick mem-
brane of 1 × 1 mm2 in size. The combination of 100 keV
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e-beam lithography and anisotropic reactive ion etching
ensures parallel walls with deviations smaller than
0.5 degrees from the vertical [18–20]. The SEM image of
a cleaved nanograting shows smooth and anisotropically
etched walls, rounded with a 21 nm radius of curvature along
the atom propagation x axis [Fig. 1(a) and inset]. Statistical
analysis of SEM images reveals a slotted hole geometry
of the slits (with straight section along 90% of the total slit
length), with a main width W ¼ 102.7� 0.3 nm and a
FWHM distribution of 7 nm [Fig. 1(b)].
Hybrid experiments at the interface between atomic

physics and nanoscience often use alkali atoms for con-
venient laser cooling and manipulation. However, nano-
structures chemically react with residual vapor that alters
the CP potential unpredictably [21]. Using noble gas atoms
in a metastable state prevents chemical damage on nano-
structures while retaining the ability for laser manipulation.
The (3p54s; 3P2), metastable state of argon is used for an
efficient and accurate time-position detection by micro-
channel plates with 80 mm diameter in front of a delay line
detector (DLD80 from RoentDek Handels GmbH). The
experiment starts with a supersonic beam of argon followed
by a counterpropagating electron gun, which provides a
flux of 108 Ar� atoms per second. The cycling transition
(3p54s; 3P2) ⟷ (3p54p; 3D3) (with Γ ¼ 2π × 5.8 MHz,
λ ¼ 811.531 nm) is used by a Zeeman decelerator to trap
atoms in a magneto-optical trap (MOT). The trap consists
of anti-Helmholtz coils providing the magnetic field
and three retroreflected laser beams, red-detuned by 2Γ,
with 7 mW total power and 2.54 cm beam diameter.

Approximately 107 atoms are trapped at a temperature
of ≈20 mK.
An initial pulse sequence pushes an atom cloud at a

chosen velocity orthogonally to the incoming supersonic
beam at 13 Hz repetition rate [22]. During this time, the
magnetic field remains constant and the molasses laser
beams are switched off. Simultaneously, the circularly
polarized pushing laser beam (5 mW, frequency adjustable
on the same cycling transition) is turned on for 0.4 ms
toward the detector and focused to 20 cm after the MOT
position. Atoms remain in the m ¼ þ2 state without any
influence on the diffraction process. ATOF measurement is
then performed, with the time-position detector 86.8 cm
away from the MOT. With this pushing technique, the
relative spread of the atomic velocity distribution Δv=v is
already less than 10%. Moreover, a time selection of 1 ms is
applied to obtain an even narrower velocity distribution.
Additionally, for an absolute velocity determination, we
used a light chopper with two resonant lasers of 1 mm
diameter perpendicular to the atomic beam axis, separated
by Δx ¼ 266.5� 1.3 mm and time triggered with a time
sequence accuracy below 50 μs. We obtained mean velo-
cities and respective uncertainties of 19.1� 0.2 ms−1 and
26.2� 0.1 ms−1 for both recorded spectra.
The vertical y axis [see Fig. 1(c)] has been chosen for the

slit alignment in order to impose a diffraction expansion
perpendicular to the Earth’s gravitational field. At 56 cm
from the MOT, the atomic beam diameter is much larger
(≈5 cm) than the entire nanograting surface, and all slits
along the y axis contribute equally to the signal. This is
not the case along the z axis (diffraction axis) where the
angular beam distribution acts as an incoherent source and
smears the signal out, in particular interference orders that
are separated by more than 2.6 (1.9) mrad for 19.1
ð26.2Þ ms−1. A compromise between atomic flux through
the nanograting and fringe visibility (smearing) is achieved
with a free opening of Lg ¼ 306� 5 μm between the
vertical edge of the plate and the nanograting boundary.
The atomic beam divergence, Δbeam

θ , through the 306 μm
slit at a distance L1 from the MOT fits a Gaussian profile
with 1.4 mrad FWHM. As a consequence, the beam
divergence alters perceptibly the measured diffraction
spectra, but in a controlled way. The nanograting is fixed
on a 6D piezo system (SmarPod 11.45 from SmarAct
GmbH) to ensure a 90.0� 0.1 degree angle between the
atomic beam and the z axis on the nanograting. An angular
deviation as small as 0.2 degrees introduces noticeable
asymmetry of the intensities of the diffraction orders.
Two experimental diffraction spectra are shown in Fig. 2

for contributing velocities between 18.7–19.5 ms−1 and
25.5–26.9 ms−1. Small electronic aberrations in position
have been corrected by the use of a 2600-hole grid pattern,
and no intensity inhomogeneity has been noticed at the
experimental accuracy level. The recording times were 40
and 13 hours for 1.006 × 105 and 1.512 × 105 atoms,

FIG. 1. SEM images of (a) a cleaved nanograting on a substrate
and (b) a free standing membrane. (c) Experimental setup. An
atomic cloud is periodically pushed by a laser (red arrow) from a
MOT at a chosen velocity through a nanograting L1 ¼ 56 cm
away. A time-position detector is located L2 ¼ 308 mm behind
the nanograting. A light chopper (blue arrows) is available for
accurate velocity measurement. A 6D piezo system controls the
grating position.
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respectively. In general, for matter waves propagating
through a transmission grating, the diffraction spectrum
envelope is determined by the wavelength and the single
slit width, while the interference peak visibility stems from
the transverse coherence length of the source. In the present
situation, the nanograting slit width effectively narrows
due to atoms that are close enough to a surface being
mechanically attracted and deflected by the Casimir–Polder
potential. Metastable atoms colliding with the surface at
room temperature are scattered randomly at high velocity,
and will return to their ground state [23].
For atoms at thermal velocities, the region near the

surfaces the atoms needed to avoid was assumed to be a few
nanometers [13,14]. Using classical trajectories, we can
estimate a lower limit for the distance at which the atoms
can pass the nanobars to be d0 ¼ 16.2ð14.2Þ nm at a beam
velocity of 19.1 ð26.2Þ ms−1 or, equivalently, an effective
slit width ofWeff ¼ 70.3ð74.3Þ nm. Such a major reduction
cannot be neglected when explaining experimental diffrac-
tion spectra (2λdB=Weff ¼ 14 mrad at 19.1 ms−1). The

effective slit width and the exerted CP forces elsewhere
in the grating explain the overall broadening of the
spectra compared with an equivalent optical picture with
first zeros at 5 mrad. The fringe visibility depends only on
the transverse coherence length of the atomic beam,
Lc ¼ λdBL1=a, with a the diameter of the incoherent
source, as given by the van Cittert–Zernike theorem
[24]. However, the quadratic dispersion relation for matter
waves suppresses the dephasing compared with light [25],
and hence enlarges Lc. From the cloud size in the MOT,
a ¼ 330� 40 μm, followed by thermal expansion, one
finds Lc ¼ 560� 45 (380� 30) nm at 19.1 ð26.2Þ ms−1

beam velocity.
The Huygens-Kirchhoff principle can be utilized for

atoms propagating in a potential that is small compared
with their kinetic energy [26,27]. This can be justified
with the help of the effective slit approximation, which
removes atoms with potential energies that are too large.
Additionally, the detection in the far field validates the
Fraunhofer approximation (x ≫ W2

eff=λdB), in which the
diffraction pattern results from the sum of wave path
differences at the nanograting output. The CP potential
is included in the wave propagation as an additional phase
ΦCPðzÞ that depends on the atom-surface distance inside the
nanograting slit z. In short, the total phase can be written as
Fðz; θÞ ¼ kz sin θ þΦCPðzÞ for a detection angle θ and a
wave number k. The incoming Gaussian wave packets have
a standard deviation σcoh ¼ Lc=2 [28,29]. The experimen-
tal value for Lc covers up to seven slits coherently and
hence, the beam cannot be considered as a plane wave. The
diffraction intensity then reads as

IðθÞ ¼
�
�
�
�

X

slits

Z

Weff

exp ½iFðz0; θÞ� exp
�

−
z02

2σ2coh

�

dz0
�
�
�
�

2

:

ð1Þ

In eikonal approximation, the phase shift imprinted by a
potential UCPðzÞ is the integral of the potential along the
particle trajectory [30]. Neglecting the surface potential
outside the grating, one finds

ΦCPðzÞ ¼ −
1

ℏv

Z
L

0

UCPðx; zÞdx ð2Þ

where L ¼ 100 nm is the nanograting depth and v the
beam velocity. However, it is necessary to account for the
exact shape of the grating along the x axis, because the slit
widths increase near the output. We incorporate this effect
by using a smaller slit thickness of Leff ¼ 95 nm.
In pioneering experiments with nanogratings and super-

sonic beams [13,31], the CP potential is modeled in the
nonretarded regime as UvdWðzÞ ¼ −Cnr

3 =z
3 for the two

adjacent surfaces. Semi-infinite surfaces are implicitly
considered everywhere inside the grating even if this is
not correct near the edges. Further, the effect of multiple

FIG. 2. Experimental diffraction spectra for beam velocities of
26 ms−1 (top) and 19.1 ms−1 (bottom) in black. The red curves
are theoretical spectra with a single adjustable parameter (d0).
The insets show individual diffraction orders. Black dots result
from experimental spectra averaged over positive and negative
diffraction orders. Red (blue) curves are calculated with CP
(vdW) potentials.
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reflection from the bar opposite has been neglected [32].
These approximations are justified for fast atoms or
molecules as the overall phase shift remains small on
average [33]. In the nonretarded regime, the coefficient Cnr

3

is given by the Lifshitz formula [34,35]

Cnr
3 ¼ ℏ

16π2ϵ0

Z
∞

0

αðiξÞ ϵðiξÞ − 1

ϵðiξÞ þ 1
dξ ð3Þ

where αðiξÞ denotes the atomic dynamic polarizability, and
ϵðiξÞ is the surface permittivity taken at imaginary frequen-
cies iξ. For metastable argon in the 3P2 state, we obtain
Cnr
3 ¼ 1.25 a:u:, or 5.04 meVnm3 in front of a Si3N4

surface with spectral responses in the UV and IR [36].
An estimate of the uncertainty of this value is rather
difficult to obtain. First, the material may show imperfec-
tions with regard to its fabrication and size [37] that alter
the index of refraction. Second, the electronic structure of
argon in the 3P2 metastable state, due to its 11.5 eV internal
energy, makes the potential more sensitive to the material
optical response in the visible and near-UV regions, where
accurate optical response data are difficult to obtain. Third,
the electronic core contribution has been estimated to be
in the range of 0.03 a.u. using the first ionic state. Such a
small core contribution is a clear theoretical advantage of
metastable argon compared with heavier (alkali) atoms
[38]. The temperature dependence of Cnr

3 can be safely
neglected here, in contrast to situations in which dominant
transitions appear in the mid-IR region [39]. Altogether, we
conservatively estimate a 10% uncertainty that is similar to
other CP calculations.
The improvement in experimental accuracy allows us to

discern the nonretarded regime and the onset of retardation
effects that arise due to the finite field propagation time
between atom and surface. This effect becomes relevant
at distances larger than λopt=ð2πÞ. Without resorting to a full
calculation of the exact shape of the potential, one can
resort to sophisticated interpolations. Here, we use a model
derived in Ref. [40] that is built on a single atomic
transition (here, λopt ¼ 811.5 nm for Ar 3P2), for which
the effective coefficient Ceff

3 ðzÞ reads as

Ceff
3 ðzÞ ¼ Cnr

3 ½ζ þ ð2 − ζ2Þf1ðzÞ þ 2ζf2ðzÞ�=π ð4Þ

with ζðzÞ ¼ 2zð2πÞ=λopt and fiðzÞ given in [41]. This
expression provides an interpolation between UvdW ∝
z−3 at short distances and Uret ∝ z−4 for z ≫ λopt. Inside
the grating, Ceff

3 ðzÞ goes from Cnr
3 at z ¼ 0 to

Ceff
3 ð51 nmÞ ¼ 0.78 Cnr

3 [Fig. 3(a)]. On average, the
detected atoms will have experienced hCeff

3 i ¼ 0.85 Cnr
3 ,

which corresponds to a 15% deviation from the nonretarded
regime. This model is in very good agreement with
the complete QED calculation [2] to within a few percent

for semi-infinite surfaces, and arguably much faster to
calculate.
As first shown in Ref. [14], the fitting procedure is

extremely sensitive to the grating geometry, and there is no
unique relation between the experimental spectrum and the
set of possible theoretical parameters. A chi-squared test is
used with χ2 ¼ P

θðIexpθ − Itheoθ Þ2=σ2θ;exp, where σθ;exp, Iexpθ ,

and Itheoθ are the experimental noise standard deviation, and
the experimental and theoretical intensities at the angle θ,
respectively. Indeed, we find a linear relation between Cnr

3

and slit width as well as nanograting thickness Lng to within
10% of their nominal values: ΔW ¼ �1 nm → ΔCnr

3 ¼
�0.07 a:u: and ΔLng ¼ �10 nm → ΔCnr

3 ¼ 0.16 a:u:
On the other hand, σcoh and Δbeam

θ are not linked to any
other parameters. The remaining important parameter,
Weff ¼ W − 2d0 in Eq. (1), is the maximum additional
CP phase shift with Φmax

CP ¼ ΦCPðd0Þ. Note that Φmax
CP is

different for both models as d0 increases with larger Cnr
3 .

Also, at larger velocities this parameter was not considered
to be critical [11].
With this, Fig. 3(b) shows (χ2min þ 40σ) surfaces of Cnr

3

and Φmax
CP at a beam velocity of 26.2 ms−1 and where

σ ¼ 6.2 is the standard deviation for two parameters [42].
The chosen magnification of 40σ reveals four local minima
forΦmax

CP that have previously not been discussed, but which
are necessary for a correct analysis using the Kirchhoff
approximation. They correspond, respectively, to distances
z ≈ 17.5, 13.1, 11.0, 10.1 nm from the surface. We chose
the global minimum for further discussion given by
Φmax

CP ¼ 10.5 rad. The dashed line is the calculated
expected Cnr

3 . Figure 3(c) is an enlargement of Fig. 3(b)
for 1 standard deviation that rejects the van der Waals
approximation (blue) by more than 30σ with regard to the

FIG. 3. (a): Ceff
3 =Cnr

3 as function of atom-surface distance.
The two dashed lines represent the recorded atom-surface
distance range. (b),(c) χ2min þ nσ [n ¼ 40 (b), n ¼ 1, 3, 6, 9
(c)] as functions of Cnr

3 and Φmax
CP at 26.2 ms−1 for vdW (blue)

and CP (red) potentials. The dashed line shows the theoretical
value for Cnr

3 .
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calculated Cnr
3 . In addition, χ2 minima for both velocities

are found to be smaller with the full CP model. For further
clarity, the insets in Fig. 2 emphasize the influence of
both models on the spectra calculated at Φmax

CP ¼ 10.5 rad
with the theoretically expected Cnr

3 . Our extracted value of
Cnr
3 ¼ 1.24� 0.15 a:u: is strongly dominated by grating

geometry uncertainties (�0.13 a:u:), where statistical error
bars—assuming a known grating—represent only �2%
(�0.025 a:u:) at one σ. Such an unprecedented value is
clearly connected to the ultra large diffraction spectra
broadening. Note that it corrects the rather crude approxi-
mation given in Ref. [43].
The advantage of using a slow atomic beam with a well-

defined velocity rather than a thermal beam derives from
the fact that the atom-surface interaction potential can be
probed to a much higher accuracy. However, this presents
another difficulty: the Kirchhoff approximation stipulates
that the (change of the) transverse wave number has to be
small compared with the longitudinal wave number,
kperp=k ≪ 1 [44]. The slower the atoms become, the more
(relative) transverse momentum they accumulate whilst
traversing the grating. At the cutoff that determines the
effective slit width, we can estimate the relative change in
transverse wave number to be roughly 5% for a beam
velocity of 26.2 ms−1, but already 10% for a velocity of
19.1 ms−1. This implies that the Kirchhoff approximation
can no longer be relied upon at slower beam velocities, at
which a more detailed theoretical description is required.
In conclusion, we have demonstrated the importance of

the retarded Casimir-Polder potential for the diffraction of
metastable Ar in a range of atom-surface distances as small
as ≈15–51 nm with a Si3N4 transmission nanograting.
Because of atomic velocities as slow as 19.1 ms−1 as well
as an accurate geometrical characterization of the nano-
grating, we were able to discriminate a difference in the CP
potential as small as 15%. For lower velocities or smaller
slit widths, the semiclassical model utilized for the simu-
lations should be replaced by a quantummechanical model.
Such a theoretical refinement will introduce quantum
reflexion at the slit walls and may produce, in some
geometry, gravity Q bounces as found for neutrons [45].
This Letter opens the opportunity for unprecedented and
accurate CP potential measurements by controlling the tilt
of the nanograting, which, combined with tomography
methods, would lead to a thorough understanding of atom-
surface interactions with implications for theoretical phys-
ics as well as nanometrology. For example, the hypothetical
non-Newtonian fifth force [46] could be constrained by an
atomic physics experiment. Atomic quantum randomwalks
[47] based on multipath beam splitters can be simply
realized with two or more nanogratings, and closed-loop
interferometers can be made extraordinary compact.
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