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A system of magnetic molecules coupled to microwave cavities (LC resonators) undergoes the
equilibrium superradiant phase transition. The transition is experimentally observable. The effect of the
coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model and then
by the modification of the magnetic phase diagram of Feg dipolar crystals, exemplifying the cooperation
between intrinsic and photon-induced spin-spin interactions. Finally, a transmission experiment is shown to
resolve the transition, measuring the quantum electrodynamical control of magnetism.
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In 1973, Hepp and Lieb showed that N — oo polar
molecules located inside a resonant electromagnetic cavity
undergo a second order transition from a normal to a
superradiant phase. The Z, (parity) symmetry is sponta-
neously broken leading to a ferroelectriclike state in the
“matter” and to a nonzero population of photons in the
cavity at equilibrium [1-3]. However, 47 years and a global
pandemic later, this quantum phase transition is yet to be
measured [4]. During this time, the community has enjoyed
a winding succession of proposals on how to achieve the
superradiant phase transition (SPT), each shortly matched
by its corresponding no-go theorem [5-10]. Nowadays, the
nonobservation of the phase transition is well understood.
The crux of the matter resides in the approximations used to
derive the Hamiltonian solved by Hepp and Lieb, the so-
called Dicke model. On one side, there is the treatment of
the A term (the diamagnetic term) [11]. On the other,
matter truncations in different gauges must be done con-
sistently as pointed out by Keeling, showing that the phase
transition, if any, is completely attributable to matter
interactions [12]. Consequently, the matter phase diagram
remains unaltered despite it being immersed in a cavity and
no photonic population develops. The same conclusion has
been recently revisited [13]. A final step for closing the
debate is found in the work by Andolina and collaborators
[14]. In the thermodynamic limit N — oo, their no-go
theorem illustrates how Gauge invariance inherently pro-
hibits the SPT for electric dipoles in the long-wavelength
limit. The latter implies that matter cannot respond to a
static and uniform electromagnetic field. Therefore, to
make the SPT observable, either the nature of the coupling
or the spatial field distribution must be, in some way,
modified.

Theoretical proposals consider systems in the ultra-
strong light-matter coupling regime [15] or use electron
gases that either possess a Rashba spin-orbit coupling [16]
or are subjected to a spatially varying electromagnetic
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field [16-18] or have the role of photons be played by
magnons [19].

Here, we propose an alternative setup, based on magnetic
molecules that couple to superconducting microwave
resonators via the Zeeman interaction [20]. Artificial
magnetic molecules [21,22], designed and synthesized
by chemical methods, consist of a high-spin cluster core
surrounded and stabilized by a cloud of organic molecular
ligands. The ability to chemically tune their relevant pro-
perties, such as the ground state spin, magnetic anisotropy
and mutual interactions, combined with their stability as
isolated molecular units, confer them a potential interest
as magnetic memories in spintronic devices [23] and as
qubits for scalable quantum information schemes [24-26].
Besides, they tend to organize forming crystals, which
makes them model systems to study pure magnetic dipolar
order and quantum phase transitions [27-31].

This work explores the realization of the Dicke model
(and generalizations of it), which undergoes the equilib-
rium SPT, in a crystal of molecular nanomagnets coupled to
a on-chip microwave cavity. We compute the critical
condition that triggers the SPT at zero and finite temper-
atures under rather general conditions, e.g., for a spatially
varying magnetic field or in the presence of direct mol-
ecule-molecule interactions, and discuss a feasible method
to detect it. Besides, we build the phase diagram for the
purely cavity-driven ferromagnetism and study how the
spin-photon coupling enhances the intrinsic ferromagnetic
order of a crystal of Feg molecular clusters [31].

Magnetic cavity QED.—Hybrid platforms coupling elec-
tron [32] and, particularly, spin [33,34] ensembles to
superconducting resonators or cavities complement circuit
QED. Here, the “spins” are superconducting qubits [35,36].
Different magnetic species have been studied in this
context, including impurity spins in semiconductors
[37-39], lanthanide ions [40,41] and magnetic molecules
[42-45]. To observe the SPT, set ups hosting molecular
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FIG. 1. Schematic picture of a coplanar waveguide (CPW)

resonator coupled to a spin ensemble. E_, and B, are the
cavity’s microwave electric and magnetic fields, respectively. B,
is the external magnetic field that induces a Zeeman splitting
between the spin energy levels.

crystals offer the crucial advantage of coupling a macro-
scopic number of identical and perfectly organized spins to
a single cavity mode (cf. Fig. 1).

A vast majority of molecular nanomagnets are both
neutral and exhibit a close to zero electric dipole. Their
response to external stimuli is then accurately described by
a simple “giant”-spin effective Hamiltonian Hg, which
includes the effects of magnetic anisotropy and the cou-
plings to magnetic field B [20,21]. The latter enter Hg via
the Zeeman term H = —g,upS - B. Here [S;, ;] = i€; Sy
are spin operators, up = (ef1/2m) is the Bohr magneton,
and g, the Landé factor (= 2 for an electron spin). The
diamagnetic response, which arises mainly from the
molecular ligands surrounding the magnetic core, is much
smaller that the paramagnetic one and can be safely
neglected, especially at sufficiently low temperatures.
These results provide the experimental background for
the following discussion.

Let us summarize the main steps to model the molecules-
cavity system in the single mode case. For the multimode
case, see [46]. The electromagnetic field is quantized,
yielding the cavity Hamiltonian H,. = #Qa'a, with a
(a") the photonic annihilation (creation) operators,
[a,a’] = 1. The resonance frequency Q ranges typically
between 1 and 10 GHz. The local quantized magnetic field
generated by the superconducting currents can be written as
By (1) = Bo, (r)(a" + a), with By, (r) = (0]B3,()|0)
its zero-point fluctuations.

The resulting gauge-invariant cavity-spin Hamiltonian
can be written as follows [20,51]

H=Hs+H.+H,,
:Hg—i—lecfat—Fz:ﬂ(emf&+ +Hc)(a"+a), (1)
VN '
with N being the number of spins, the ladder operators
S* = §¥ 4 iS”, and the coupling constants

A gehs

JN  2n

|Brms<rj)|' (2)

Here, r; is the position vector of the jth spin. The phases 6;
in Eq. (1) are defined through By ,(r;) + iBus,(r;) =
| Buns (1) | If the molecules are S = 1/2 noninteracting
spins, like in a sufficiently diluted free radical sample,
Hs = h(w./2));0; and the Hamiltonian (1) matches
exactly the Dicke model. Notice that this model does
not suffer from the “A? issue” because the coupling is of
Zeeman kind, rather than minimal (electric). Besides, the
truncation of the electronic degrees of freedom to a finite
dimensional Hilbert space is not an approximation but
follows from the fact that we are dealing with “real” spins
obeying the angular momentum commutation relations.
Both properties combined permit to avoid the no-go
theorems for the SPT [14].

Exact results at N — oco.—In order to study specific spin
models and how their properties are affected by the
coupling to light and vice versa, it is convenient to obtain
an effective spin Hamiltonian where the light degrees of
freedom have been traced out. Following Hepp and Lieb’s
original derivation [2], this effective Hamiltonian is defined
by the following expression, exact in the N — oo limit,

_ 1
Z="Trg (/dzae_/m(”)) = Trg(ePMsar),  (3)
P

where H(a) = (a|H|a) and H is the total Hamiltonian
given by Eq. (1). The resulting (see [46]) effective
Hamiltonian is

1 nl; . 2
Hsert =Hs =75 {Zj\/—]iv(elngf + Hc)} .4
It is apparent that the light-matter coupling translates into
an effective Ising-type ferromagnetic interaction among
all spins that drives the quantum phase transition. This
formulation is particularly handy for studying spin models
that are well captured by a mean field approach, as we
show below.

The critical point can be obtained by noticing that
[H;, H.] ~[H;, Hs] ~ 1/N. Then, in the thermodynamic
limit, system and cavity factorize. Generalizing the pre-
scription in [14] to the finite temperature case (fully
developed in [46]), the critical condition can be written
in terms of the static response function R(7) of the bare
spin model,

hQ

|R(T)| > 5 (5)
where
R(T)
_ hi; 0. mn —
Sl S, (S +H.C-)‘Wn>|2—eﬂAAm,, :
- Zme_ﬁem ’

(6)

167201-2



PHYSICAL REVIEW LETTERS 127, 167201 (2021)

with |y,,), €,, the eigenstates and eigenenergies of the bare
spin Hamiltonian Hg and A,,, = €,, —€,. In the case of
uniform coupling, 1; = 4, the static response function is
proportional to the magnetic susceptibility R = (A%)%y in
the xy plane, perpendicular to the external dc magnetic
field (see Fig. 1). A similar condition is found in three-
dimensional electronic systems when the spin degrees of
freedom are considered [18].

Both approaches show a relation between light and
matter observables given by

@) =5, st +He)) (1)

S

indicating that the phase transition is marked by the onset
of both a macroscopic population of photons in the cavity
and a spontaneous magnetization in the spin system.

In the case of independent spins coupled to a field
pointing along x, we obtain the critical condition of the
Dicke model for a spin S

_w Q

P [(28+1)cth(hﬁ%(25+1)> —cth(hﬁ%)}_l,

(8)

which depends on the coupling only through the collective
parameter A2 = N~' Y i /1?, i.e., the root mean square of the
spin-dependent couplings

2=V

sample

2,2
/ 2r)av =4 0 (9)

sample 8h
where Vgmpe is the cavity volume occupied by spins
and p = N/Vgupie is the density of spins. In the second
equality, we have used Eq. (2) and the Virial theorem and
introduced the filling factor v = I(Vgmpre) /1(Viora) With
I<V) = fV |Brms(r)‘2dv

Vacuum-fluctuations-driven ferromagnetism.—To illus-
trate the effects of the coupling between the cavity and
the magnetic molecules as well as the interplay between
intrinsic and light-induced ferromagnetic interactions, we
showcase two examples using realistic experimental param-
eters. From a theoretical perspective, Fig. 2 shows the
alterations to the zero-temperature phases of the paradig-
matic quantum Ising chain for S = 1/2 spins, defined by
Hs=Husing = (ha,/2) > ;05— (J/2) 3070}, Note that
according to Eq. (7) ferromagnetic and superradiant phases
are synonymous; i.e., ferromagnetic ordering is always
accompanied by a finite photon population in the cavity.
In particular, regions I, II, and Il are superradiant, as
evidenced by the finite values of magnetization |(s,)| and
photon number (a'a)/N shown in the insets of Fig. 2.
Remarkably, the light-induced effective ferromagnetic inter-
action overpowers the intrinsic antiferromagnetic interaction

1.0
| <U.'c > ferro I
=N
(J ) .\_ - |<U.L‘>stag|
oob—— L= = (a'a)/N
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=
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FIG. 2. Mean field phase diagram of the cavity-spin Hamil-
tonian for § = 1/2 spins with Hg = Hyn, in 1D. The black
region is antiferromagnetic. The grey region is superradiant and
thus ferromagnetic. The white region is not superradiant nor
magnetically ordered. For clarity, right and upper subplots
showcase the standard (o) and staggered (o,)y,, Magnetiza-
tions, as well as the number of photons per spin {a'a)/N, along
vertical and horizontal slices of the phase diagram indicated by
the arrows. For the units, J,.(4 = 0) is the critical Ising coupling
in the absence of cavity and w,.(J =0) is the critical spin
frequency in the absence of direct Ising coupling. The parameters
used are p = 5.1 x 10 cm™3, Q = 1.4 x 10° 57!, and v = 1.

extending region I into the J < 0 sector. In region Il it is the
synergy between intrinsic and induced ferromagnetism that
gives rise to superradiance. Finally, region III is intrinsically
ferromagnetic even in the absence of the cavity and thus
becomes superradiant when coupled to one. The use of the
mean field approximation is validated in [46] by comparing
the superradiant phase boundary obtained with mean field
against the one obtained using exact diagonalization to
compute the response function R (5).

Next, we consider a more realistic model. It corresponds
to a specific molecular material, a crystal of Feg clusters
with § = 10, which shows a ferromagnetic phase transition
purely induced by dipolar interactions below a critical
temperature 7.(B, = 0) 2 0.6 K and a zero-temperature
critical magnetic field B, . ~2.65 T [31]. The magnetic
phase diagram measured for a magnetic field perpendicular
to the magnetic anisotropy axis is shown in Fig. 3. As
expected for a system dominated by long-range dipolar
interactions, it agrees very well with the predictions of a
mean-field Hamiltonian

Mg =—DS? + E(S2 = $2) — gupB -
- 2J<Sx>Sx + J<Sx>2’ (10)
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FIG. 3. B.—T, phase boundary determined with a quantum
mean-field calculation. The solid line corresponds to the bare spin
model (10) and is verified against experimental data (dots)
obtained for a crystal of Feg molecular clusters [31], whose
structure [52] is shown in the inset. The external field, B, is
applied perpendicular to the easy magnetization axis x: B =
B, (0,sin¢,—cos¢) with ¢ = 68°. The magnetic anisotropy
parameters are D/kg = 0.294 K and E/kp = 0.046 K, and the
coupling J/kg = 2.85 x 1073 K. The remaining lines are ob-
tained with the same method taking into account the coupling to a
microwave cavity for a range of filling factors v. The parameters
used are p = 5.1 x 10%° cm™3, taken from the crystal lattice of
Feg and Q = 1.4 x 10° s~

with parameters given in Fig. 3. The combination of high
spin, thus high susceptibility, and negligible exchange
interactions, which lead to a quite low 7. even for a
densely concentrated spin lattice, makes this material well
suited to obtain and measure the SPT.

This expectation is borne out by calculations that include
the coupling to a microwave cavity, whose results are also
included in Fig. 3. They show that light-matter interaction
has a remarkable effect on the equilibrium phase diagram,
enhancing both B, . and T, the latter by almost as much as
a factor of 6, depending on the filling of the cavity. This can
be understood by noting that the effective Hamiltonian is
given by Eq. (10) but with the coupling J replaced by
Jer = J + hA%/Q. This enhancement evidences that the
cavity induces quite strong ferromagnetic correlations, a
characteristic signature of the SPT, which in this case
cooperate with the intrinsic interactions between the spins
in the crystal. Achieving filling factors well above 0.1
seems quite reasonable provided that one achieves a
sufficiently good interface between the chip and the
magnetic material. It can also be seen from these results
that, even after the introduction of direct spin-spin inter-
actions, the transition depends only on the filling factor, as
shown in [46]. We emphasize that the two previous
examples show how, with magnetic coupling, the light-
induced and intrinsic interactions add up, modifying the

bare matter phase diagram. This is the signature of
photon condensation and, thus, of the occurrence of the
SPT [12,14].

Transmission experiment for resolving the transition.—
Finally, we discuss how to measure a signature of the phase
transition. A direct route would be to measure the order
temperature of the magnetic material inside and outside the
cavity. However, conventional methods to measure 7, (or
B,.), based on magnetic susceptibility or neutron diffraction
[31], do not lend themselves easily to include a super-
conducting cavity. Besides, they require very large crystals,
often much larger than the typical cavity volumes.
Therefore, we envision here a more accessible way: a
transmission experiment, where the cavity is coupled to a
microwave transmission line. A signal, sent through it,
interacts with the cavity-spins system and the transmitted
signal is recorded. Since this signal is proportional to the
dynamical response of the system, we expect to observe a
signature near the transition. Technically, the calculation
involves computing the dynamical susceptibility of the
whole system (cavity plus spins) using a quantum master
equation. Typically, the dissipation for both the spins and
the cavity is added phenomenologically, inserting the terms
as if the cavity and the spins were not coupled. However,
this so-called local approach has been criticized. A rigorous
derivation involves taking into account the coupling
between the two subsystems, obtaining the global master
equation. The differences between both approaches are
relevant in strongly coupled systems [53-55]. Since we are
interested in what happens near the transition, we explore
the differences between local and global approaches to rule
out that the signature is an artifact of the approximations
taken. We notice, however, that in the global approach both
eigenvectors and eigenvalues for the coupled system are
needed. These are impossible to obtain in a full treatment.
On the other hand, if we consider a spin 1/2 Dicke model
with homogeneous coupling to the cavity a Holstein-
Primakoff transformation allows us to write the total
Hamiltonian as two coupled oscillators. Then, the system
is exactly solvable and the global master equation can be
obtained. By doing so, we can compare both local and
global approaches for resolving the transition.

The explicit formulas are rather involved and thus sent
to [46]. In Fig. 4 we summarize our findings. We show 2D
transmission plots for temperatures larger or smaller than
the zero-field critical temperature 7.(0). In the former
limit, the system remains disordered, regardless of w,
and only shows the well-known avoided crossing at
® = Q = w,. As temperature is decreased below T.(0)
the magnetic and photon states depend on @,. The phase
transition, for @, ~ @, .(0), is then characterized by the
appearance of a new resonance, i.e., a new transmission
channel, at w, ~ w_.(0). On physical grounds, this is a
consequence of the vanishing frequency of the lower
mode at the transition, which increases the response at
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FIG. 4. Plots of the transmission for temperatures below and
above the critical temperature at zero field (top and bottom)
computed with the local and global master equation (left and
right) as a function of the ratios between w, @, and  for a spin
1/2 Dicke model. A dotted black line marks the transition to the
superradiant phase at w,.(0). The parameters used are y; =
0.025 Q, 7,=0.0250,, p=5.1x10cm™3, Q = 1.4 x 10° 57,
and v = 0.25.

equilibrium (@ — 0). Besides, the resonance appears in
both the local and global approaches, supporting our
findings. Quantitative differences appear, obviously, but
this is expected since one of the pitfalls of the local
approach is not reproducing the correct equilibrium states.
This behavior constitutes a clear signature of the SPT and
shows that this transition can be detected in a standard
temperature-dependent transmission experiment, provided
that the spin-photon coupling is large enough.

Conclusions.—We have shown that the coupling of a
macroscopic number of spins, in particular crystals of
molecular nanomagnets, to the quantum vacuum fluctua-
tions of cavities or LC resonators generates ferromagnetic
spin-spin interactions that lead to an equilibrium super-
radiant phase transition. Using realistic parameters, we find
that it also gives rise to detectable signatures in the
transmission of microwaves through such a hybrid setup,
thus providing a feasible solution to the long-standing
problem of measuring the SPT. Our results also present
these systems as ideal for exploring the quantum electro-
dynamical control of matter, baptized as cavity QED
materials [56]. Recent studies have shown that quantum
light fluctuations can modify properties such as excitonic
transport [57-59], chemical reactivity [60,61], supercon-
ductivity [62-65], and the ferroelectric phase in quantum
paramagnetic materials [66—68]. Here, we show that they
can also generate, modify and control long-range ordered
magnetic phases.
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