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Graphene nanoribbons (GNRs) possess distinct symmetry-protected topological phases. We show,
through first-principles calculations, that by applying an experimentally accessible transverse electric field,
certain boron and nitrogen periodically codoped GNRs have tunable topological phases. The tunability
arises from a field-induced band inversion due to an opposite response of the conduction- and valence-band
states to the electric field. With a spatially varying applied field, segments of GNRs of distinct topological
phases are created, resulting in a field-programmable array of topological junction states, each may be
occupied with charge or spin. Our findings not only show that electric field may be used as an easy tuning
knob for topological phases in quasi-one-dimensional systems, but also provide new design principles for
future GNR-based quantum electronic devices through their topological characters.
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The topology of a crystal’s electronic structure, on par
with its band structure and electron filling, plays an
essential role in its electronic properties [1–3]. For
example, joining two insulators of different topological
classes produce robust junction states in the band gap of
these insulators [2–6]. Recently, a wide range of graphene
nanoribbons (GNRs), including the armchair, cove-edged,
and chevron GNRs, have been shown to host rich
electronic topological phases depending on their width,
edge shape, and end terminations [7–10]. Moreover, the
recent rapid development of bottom-up synthesis of GNRs
from precursor molecules enables atomically precise
design of a large variety of GNRs, including control of
widths [11–13], dopant atoms [14–16], and diverse edge
shapes [17–20]. Such synthesis capabilities have led to the
striking experimental discovery of 1D superlattices
formed by alternating segments of topologically distinct
GNRs which have been measured to host a one-
dimensional array of topological junction states [21,22],
as predicted by theory [7].
Having the ability to controllably tune the topological

invariants of materials is an actively pursued topic since it
opens new opportunities for scientific studies and appli-
cations. Despite proposals on switching between normal
and topological insulators in 2D and 3D based on first-
principles calculations, using external electric fields [23],
tensile strains [24,25], temperature and alloying [26–29],
and so on [30–32], strategies for tuning topological phases
in 1D systems remain relatively underexplored. In this
work, by first-principles calculations, we discover that
topological phases of certain quasi-1D systems may be
practically tuned by a new strategy that exploits external
transverse electric fields (TEFs). We demonstrate this

strategy using a designed GNR periodically codoped with
nitrogen and boron [Fig. 1(a)].
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FIG. 1. (a) A unit cell of the B&N-11AGNR (commensurate
with a zigzag end termination). The blue arrow shows the
direction of a positive TEF. The red dashed line shows a mirror
plane of the system, and the blue dashed line defines a normal
plane about which the positions of the boron and nitrogen dimers
are switched upon reflection. (b),(c) The BCB wave function (b)
and TVB wave function (c) at the Γ point on a plane at 1 Å above
the GNR basal plane. (d) The B&N-11AGNR band structure
without any applied field. The blue, red, and green colors in the
band structure denote the module squared weights of the wave
function that are projected onto the boron, nitrogen, and carbon
atomic orbitals, respectively. The scale bar defines the mapping
between the color scale and the percentage weight. The projection
is normalized according to the total number of atoms of each
species per unit cell. The parity eigenvalues hψnΓi

jM̂jψnΓi
i of the

eight bands near the Fermi level EF at Γ and X are marked as “þ”
(“−”) for a value of þ1 (−1).
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The band topological invariant of a 1D insulating crystal
with multiple atoms per unit cell depends on the assignment
of its unit cell, which in turn is dictated by the atomic
structure at the end termination of the 1D system (i.e., the
unit cell should be commensurate with the boundary
geometry) [7]. For instance, using the approximate chiral
symmetry (the A=B sublattice symmetry) of the GNRs, the
band topology of this multiband system can be charac-
terized by a winding number Z, which may be obtained
using the difference between the intercell part of the Zak
phase contributed by the A sublattice and that contributed
by the B sublattice, summed over all bands up to the
charge neutrality gap [10]. For such a system with a
winding number Z, there will be Z topologically protected
localized in-gap states at its end termination with vacuum,
according to the bulk-edge correspondence [33]. On the
other hand, a Z2 topological classification can be exactly
applied to a 1D insulating crystal with spinless time
reversal symmetry (TRS) and spatial inversion or mirror
symmetry [7].
In a 1D crystal, the Zak phase [34] for the nth band is

defined as the integral of the Berry’s connection across
the 1D Brillouin zone (BZ): γn ¼ ið2π=dÞ R π=d

−π=d dkhunk
jð∂unk=∂kÞi, where unk is the lattice-periodic part of the
Bloch state, d is the unit cell size, and k is the wave vector.
The Zak phase of an isolated band of a general 1D insulator
can take on any value, depending on the choice of the shape
and origin of the unit cell. Nevertheless, if the unit cell of
the crystal has inversion or mirror symmetry, the intercell
(origin-independent) part of the Zak phase is uniquely
determined for a given unit cell shape and is quantized to 0
or π (mod 2π) [7,8]. The Z2 invariant of a 1D insulator with
such symmetries is then given by ð−1ÞZ2 ¼ eiΣn∈occγn, where
the sum is over the occupied bands. When the total intercell
Zak phase is π (0) (mod 2π), the Z2 invariant is 1 (0). As
shown in previous work [4,7], for a unit cell with inversion
Î or mirror M̂ symmetry (Ô ¼ Î or M̂), the Z2 invariant of a
GNR may be determined by the product of the eigenvalues
of Ô of the states at all the time reversal invariant
momentum (TRIM) k points in the occupied band mani-
fold: ð−1ÞZ2 ¼ Q

n∈occ
Q

Γi
hψnΓi

jÔjψnΓi
i, where ψnΓi

is the
wave function at the TRIM Γi ¼ Γ, X in the 1D BZ. In this
study, we analyze our system using both classification
schemes since it possesses TRS and spatial symmetries, as
well as, to a very high degree, chiral symmetry.
For experimentally bottom-up synthesized GNR sys-

tems, the dangling σ orbitals of the edge carbon atoms are
capped by hydrogen and are removed in energy from the
band gap region, so these σ states are not involved in the
formation of the end or junction in-gap states. Also,
because the GNRs considered in this work have a mirror
symmetry with respect to the carbon basal plane, the σ
(mirror even) and π (mirror odd) bands do not hybridize.
Only the bands account for the in-gap physics of interest.

Thus, both the Z and Z2 invariants of the GNRs of interest
are calculated from the occupied band manifold of π
electrons (denoted by π and occ) only. For example, Z2

is given by

ð−1ÞZ2 ¼
Y

n∈π and occ

hψnΓjÔjψnΓihψnXjÔjψnXi: ð1Þ

In general, a transition from one topological phase to
another for an insulator requires its band gap to close and
reopen by external tuning parameters while preserving the
symmetries desired. In our case, a TEF along the width of
the GNR (the y axis) [Fig. 1(a)] is used because it preserves
both the approximate chiral symmetry in the GNR (see
Supplemental Material, Sec. I [35]) and the mirror sym-
metry of the GNR unit cell.
As indicated by Eq. (1), changing the Z2 invariant by band

reordering at the fundamental band gap requires the wave
functions at the minimum of the bottom conduction
band (BCB) and the maximum of the top valence band
(TVB) to have opposite parities at one of the Γi points, i.e.,
hψBCBΓi

jM̂jψBCBΓi
ihψTVBΓi

jM̂jψTVBΓi
i ¼ −1. This ensures

zero wave function mixing between the two states at this Γi
point of the BCB and TVB as a function of the TEF strength,
so a band gap closing is ensured during the induced band
inversion process.
We satisfy this requirement by designing an armchair

GNR (AGNR) with periodic arrays of substitutional boron-
dimer and nitrogen-dimer dopants [Fig. 1(a)]. From our
density functional theory (DFT) calculations, comparing
results for an isolated boron dimer to a nitrogen dimer
substitutionally doped onto the backbone of an AGNR
shows that these two dimer defects introduce dopant states
of opposite parity in the fundamental band gap of the
pristine AGNR. We therefore incorporate both boron- and
nitrogen-dimer arrays into the same AGNR and achieve
having a boron-dimer (nitrogen-dimer) dopant band as its
new BCB (TVB) with −1 (þ1) parity eigenvalue at both Γ
and X.
Second, to make possible a field-induced band inversion,

the BCB and TVB should have opposite energy shift in
response to the applied TEF, requiring the wave function
amplitude of BCB and TVB (and thus the GNR structure)
to be asymmetric along the transverse (widthwise) direction
of the GNR. Thus, we put the boron- and nitrogen-dimer
dopants near the opposite edges of the AGNR [Fig. 1(a)].
The boron- and nitrogen-dimer dopants are symmetric to

a mirror plane [red dashed vertical line in Fig. 1(a)] which
retains the mirror symmetry of the system. In addition, in
AGNRs with an odd number of rows of atoms forming the
width, the boron- and nitrogen-dimer exchange positions
upon a reflection with respect to the perpendicular plane at
the central backbone defined by the blue dashed line in
Fig. 1(a). This ensures the system to have chiral symmetry
within the nearest-neighbor tight-binding model, with and

PHYSICAL REVIEW LETTERS 127, 166401 (2021)

166401-2



without the presence of the TEF (see Supplemental
Material, Sec. I [35]). Thus, the topology of the system
can be classified by either a Z2 index (using the former) or a
Z index (using the latter).
Among a series of GNR structures designed, guided by

the above design principles, an AGNR having 11 rows of
carbon atoms with one boron-dimer dopant and one
nitrogen-dimer dopant in every three pentacene units
(abbreviated as B&N-11AGNR) [Fig. 1(a)] is found to
have the desired properties for field-tunable topological
phases. The pristine B&N-11AGNR without any applied
field has a direct band gap of ∼2.9 meV calculated using
DFT within the local density approximation (LDA) as
implemented in the Quantum ESPRESSO (QE) package [36].
This small gap (dictated by the ribbon width [53], density,
and exact positions of dopants) makes an electric-field-
induced band inversion experimentally feasible.
The evolution of the DFT-LDA band structure with

different applied TEFs (Fig. 2) is calculated using a
supercell method that has a sawtooth potential changing
along the y direction and accounts for dipole correction and
depolarization field appropriately [54]. We find that
band inversion at the X point happens at a critical TEF
[with positive direction defined in Fig. 1(a)] strength of
Ec ∼ −0.2 V=nm. For TEF with E < Ec, the orbital
characters and parity eigenvalues of the bottom of the
BCB and the top of the TVB at the X point switch with each
other, giving rise to inverted bands. A wave function
projection analysis shows that, for E < Ec, the orbital
character of the band states, as a function of the wave vector
k, does recover to its original character at some distance
away from the X point [Figs. 2(c) and 2(d)]. From
Eq. (1), we obtain that the value of Z2 changes from
1 to 0 as E goes below Ec. We also evaluate the Z2 invariant

by calculating the center of the Wannier functions [37–40]
using the WANNIER90 package [41] (see Supplemental
Material, Sec. V [35]). Moreover, we show that the DFT
Hamiltonian for our system may be mapped approximately
to a chiral Hamiltonian in a maximally localized Wannier
function basis (see Supplemental Material, Sec. III [35]),
and that its Z index changes from 1 to 0 as the E goes below
Ec, consistent with the above Z2 classification. Thus, the

(a) (b)

(c) (d)

FIG. 2. The band inversion process under changing TEFs from
DFT-LDA calculations. As the TEF goes below a critical field
strength of Ec ∼ −0.2 V=nm, the characters (and parities) of the
states of the BCB and TVB at the X point are inverted, and both
the Z and Z2 invariants of this system change from 1 to 0. The
bands are enlarged in a region near the X point in reciprocal space
spanning over 1=10 of the Γ − X length.

(a)

(b)

(c)

(d)

(e)

FIG. 3. Bulk-boundary correspondence. (a)–(c) The red curves
show the calculated end-cell LDOS [integrated in the red
rectangular region in (d)] of the 24-unit-cell finite-length GNR
with TEF of E ¼ 1.09 V=nm (a), 0 V=nm (b), and −1.09 V=nm
(c), while the blue curves show the bulk DOS per unit cell at the
same TEFs. Both the LDOS and DOS are in units of number of
states per energy per length without considering spin degeneracy.
The Gaussian broadening factor is 1 meV for both the LDOS and
bulk DOS. The insets enlarge the green dashed rectangular
regions. (d) The isosurface charge density plot at 1.4 ×
10−5 Å−3 (1% of the maximum value) of the topological end
state in the 24-unit-cell finite segment (only the left 1=3 of the
segment is shown). The TEF is 1.09 V=nm (Z ¼ 1). (e) DFT-
LDA band gap versus TEF calculated using the SIESTA package
(Ec ∼ −0.8 V=nm). The calculated Z invariant is 1 (0) for E > Ec
(E < Ec). The colors on different parts of the curve denote the
number of end states per end for the system.
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B&N-11AGNR satisfies all our designing principles and
has a topological Z2 invariant and a Z invariant that are
tunable with an experimental realizable TEF in the order of
0.1 V=nm [55–57].
We next investigate the topological end states of a B&N-

11AGNR finite-length segment and the relation between
the number of the end states and the value of Z, namely, the
bulk-boundary correspondence [6,10,33]. We perform a
DFT calculation of the electronic structure of a finite-length
B&N-11AGNR including 24 repeating unit cells of the
form shown in Fig. 1(a), with the SIESTA package [42] using
a limited single zeta atomic basis. All the dangling bonds at
the end of the ribbon (which is a zigzag termination) are
capped by hydrogen atoms. The number of in-gap end
states at one end in the charge neutrality gap as a function
of the TEF strength and direction have three regions of
distinct behavior [Fig. 3(e)]. For E > Ec (with the critical
field Ec ∼ −0.8 V=nm for band inversion from the SIESTA

calculation), one topological in-gap end state appears at
each end, while for Es < E < Ec, no in-gap end state
emerges (Es ∼ −1.8 V=nm). For E < Es, two localized
states emerge in the band gap at each end. However, these
two end states, unlike the topologically protected one in the
case of E > Ec, can be eliminated by small perturbations
on the end atoms (see Supplemental Material, Sec. IV [35]),
so they are trivial end states. Thus, as expected, the bulk-
boundary correspondence holds in this system. The plane
wave basis set used in the QE calculation of the periodic
system (Fig. 2) is well converged. However, for the finite
segment SIESTA calculations (Fig. 3), a limited basis set was
used (because of the large number of atoms), leading to less
converged band gap values. This results in different values
of Ec and Es obtained by the two packages. Nevertheless,
the topological character of the bands of the two calcu-
lations remains the same.
From our theory, the TEF strength not only changes the

number of end states, it also controls how localized the end

states are. The local density of states (LDOS) at the end
unit cell of the finite segment for three different TEFs
[Figs. 3(a)–3(c)] are compared with the bulk density of
states (DOS) per unit cell. For E ¼ 1.09 V=nm (Z ¼ 1),
the end-cell LDOS shows a sharp and big peak at
E − EF ¼ 0, arising from a very localized in-gap state at
each end [Fig. 3(a)]. A smaller bulk gap at E ¼ 0 V=nm
makes the end states less localized, resulting in a lower
peak height at E − EF ¼ 0 [Fig. 3(b)]. For E ¼
−1.09 V=nm (Z ¼ 0), no in-gap peak emerges in the
end-cell LDOS [Fig. 3(c)], showing an absence of in-
gap end states.
A field switchable topological phase enables the use of a

spatially varying TEF to create and confine topological
junction states between two insulating regions of different
Z invariants. To illustrate this effect, we apply a superlattice
electric field [i.e., a periodically repeated pattern of
TEF with a repeating unit profile shown in Fig. 4(a)] on a
B&N-11AGNR as shown in Fig. 4(b). The TEF is
negative (zero) in the left (right) half of the supercell and
has a form Ey¼ðE0=πÞ½arctanðxÞ−arctanðx−ðdSC=2ÞÞ−
arctanðxþðdSC=2ÞÞ−ðπ=2Þ�, where the length of the super-
cell along the x direction is dSC ¼ 305.2 Å. ATEF of such
a pattern may be created by a periodic array of parallel
gates with alternating bias voltages [58]. For example, a
topological junction state is confined at the junction
between the left part with E ¼ −1.58 V=nm and the right
part with E ¼ 0 V=nm (E0 ¼ 1.58 V=nm) [Fig. 4(b)]
because the Z invariant changes by 1 across the junction
under this field profile. The two junctions in one supercell
each hosts a protected junction state, which form two bands
with small dispersions (∼5 meV) inside the common gap
of the left and right “bulk” region. Hence, the LDOS of
the unit cell at the junction [the red rectangle in Fig. 4(b)]
shows two ∼5 meV wide peaks inside the common
bulk gap [Fig. 4(c)]. In contrast to heterostructures of

(a)

(c)

(b)

FIG. 4. (a) The TEF profile in one repeating period as a function of coordinate x which is along the axis of the ribbon. (b) The
isosurface charge density plot at 2.7 × 10−6 Å−3 (2% of the maximum value) of the topological junction state (evaluated at the Γ point of
the superlattice) of a B&N-11AGNR with the superlattice electric field in (a) applied. One repeating period of the TEF [the supercell
shown in (b)] contains 24 B&N-11AGNR unit cells. The field strengths in the center of the left (right) region are−1.58 V=nm (0 V=nm)
resulting in the system with Z being 0 (1). (c) DOS of the GNR in a superlattice electric field. The red solid curve shows the LDOS
computed in the junction region [the red rectangle in (b)]. The green (blue) dashed curves show the bulk DOS per unit cell with a
uniform TEF of E ¼ −1.58 V=nm (0 V=nm).

PHYSICAL REVIEW LETTERS 127, 166401 (2021)

166401-4



geometrically different GNRs of distinct topological phases
in which junction states appear at the junction
[7,8,10,21,22], the topological junction states of the
B&N-11AGNR are created by the profile of the TEF
and can be moved freely to different locations in the
material by varying the field profile. This gives us another
degree of freedom in the rational control of topological
junction states in 1D systems [7]. Furthermore, the cou-
pling between two nearby localized states of the junction
array, given by the junction separation, is programmable by
the spatial profile of the field.
In conclusion, we have proposed a scheme for designing

GNRs with tunable topological phase by an applied TEF
and have demonstrated its feasibility through ab initio
studies. Our analyses and first-principles calculations
have shown that topological end states can be created or
annihilated by a uniform applied TEF on a GNR finite
segment, and topological junction states can be generated
in a homogeneous GNR by applying specific profiles of
piecewise uniform TEFs. Our study has provided a new
way of controlling topological junction or end states in 1D
systems which may be used in building quantum dot spin
qubits with tunable couplings, and this is a promising new
approach for designing future GNR-based quantum elec-
tronic devices.
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