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We introduce a computational method for global optimization of structure and ordering in atomic
systems. The method relies on interpolation between chemical elements, which is incorporated in a
machine-learning structural fingerprint. The method is based on Bayesian optimization with Gaussian
processes and is applied to the global optimization of Au-Cu bulk systems, Cu-Ni surfaces with CO
adsorption, and Cu-Ni clusters. The method consistently identifies low-energy structures, which are likely
to be the global minima of the energy. For the investigated systems with 23–66 atoms, the number of
required energy and force calculations is in the range 3–75.
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The atomic-level structure of a material is often of crucial
importance for its mechanical, electronic, magnetic, or
chemical properties. At low temperatures, the structure can,
in principle, be determined computationally by minimizing
the energy of the system. However, the space of different
atomic configurations of a material is huge, and structure
determination is therefore a long-standing challenge in
computational physics.
A number of methods to address this challenge have

been introduced [1], including basin hopping [2], particle
swarm optimization [3], evolutionary algorithms, [4–7],
and random searches [8]. However, all of these methods
require a large number of energy and force calculations,
which can be time consuming if performed with, for
example, density-functional theory (DFT) or higher-level
quantum chemistry methods.
During the last decade, machine-learning techniques

have gained impact on computational material physics
[9–25]. The field of global optimization of atomic struc-
tures took a major step forward recently with the GOFEE
approach [26]. In this approach, Gaussian processes are
used to generate a surrogate potential energy surface (PES),
which is then explored by random searching and Bayesian
optimization. Thereby, a speed-up of several orders of
magnitude in determining the optimal structure is in some
cases achieved [26]. This method was expanded with
training to forces and several other modifications in the
BEACON code [27].
Global optimization is particularly challenging if many

local minima exist in the PES. This would typically be the
case for large systems, but it also appears for smaller
systems when several chemical elements are present. In
many alloys, the interchange of two atoms introduces
another local minimum in the potential energy surface,
but with a different energy. The number of local minima

thus becomes the number of different ordering permuta-
tions of the atoms in the lattice, which can be huge. For
example, in a 64-atom unit cell with equal amounts of two
different types of atoms, the number of possible permuta-
tions is on the order of 1018, and it is, of course, not possible
for any algorithm to explore all these configurations.
Here we address the challenge of many local minima by

interpolation between chemical elements (“ICE”). With this
approach, atoms of different chemical elements can switch
place not by moving in real space but by gradually
changing their chemical identities. This leads to a much
reduced or even vanishing barrier for the process. The idea
of interpolating in chemical space has also been used in
other contexts, including catalyst design [28], in combi-
nation with perturbation theory [29–32], to treat disordered
alloys with the coherent potential approximation [33–35]
and to incorporate chemical information in the descriptors
of machine-learning models to explore the chemical space
[12,36,37]. We integrate the idea of interpolation between
chemical elements with BEACON into a new method (“ICE-
BEACON”), which allows for global structure optimization
through simultaneous optimization of chemical identities
and atomic coordinates.
At the heart of the method is a fingerprint, which is a

vector representation of the system configuration for a
given set of atomic coordinates and fractional chemical
identities of the atoms (termed “element fractions” in the
following). For all element fractions equal to 0 or 1, the
fingerprint is the same as the one used in BEACON [27], and
it is described in detail in the Appendix. Given a database of
energy and force calculations obtained, for example, with
DFT, the fingerprint allows the construction of a surrogate
PES using a Gaussian process. It is possible to analytically
predict energies and the derivatives with respect to both
atomic coordinates and element fractions on the surrogate
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PES, allowing the use of gradient-based optimization
algorithms.
The global optimization uses Bayesian optimization and

is performed in the following way. (1) An initial database of
typically two DFT calculations based on random configu-
rations is constructed. (2) The associated surrogate PES is
explored by 40 energy minimizations starting from random
configurations in the space of element fractions and atomic
coordinates or from previously visited energy minima with
rattling of the atomic positions and with random element
fractions. The element fractions are constrained to keep the
right overall stoichiometry. (3) The element fractions of the
resulting 40 configurations are rounded to the nearest
integer (if necessary), and the configurations are evaluated
with a lower-confidence-bound acquisition function (see
Appendix for details). A DFT calculation for the configu-
ration with the lowest acquisition function value is included
in the database. The procedure is continued by returning to
step (2).
All the DFT calculations presented in this Letter are

performed with GPAW [38] using the Atomic Simulation
Environment [39,40] and the Perdew-Burke-Ernzerhof
(PBE) functional [41] unless otherwise stated. The local
relaxations in the surrogate potential energy surface are
carried out by sequential least squares programming as
implemented in the SCIPY package [42,43], which enables
the use of both equality and inequality constraints with
efficient gradient-driven optimization. In ICE-BEACON, we
need equality constraints to fix the number of atoms of
different elements in the system, while inequality

constraints are used in order to limit the element fractions
to be between 0 and 1.
We first consider a AuCu bulk system in a fixed fcc

structure with a 64-atom supercell, with 32 atoms of both
gold and copper, and a lattice parameter of 3.767 Å. In
Fig. 1, we illustrate a single local optimization of the atomic
ordering by relaxing the element fractions of the atoms
within the surrogate potential energy surface. The training
set consists of four DFT calculations with different order-
ings of the atoms.
Starting from random fractions (step index 0), the

run ends up with the correct layered structure of Au and
Cu [44,45]. The energy evolution is smooth and the descent
optimization is able to guide the system into the low-energy
minimum without trapping in states with noninteger ele-
ment fractions.
We also see that some of the parameters stay at 0 or 1

during multiple steps, but then change from 0 to 1 (or from
1 to 0) later in the run. This shows that the method not only
pushes all the fractions to the closest zeros and ones (which
would be close to a local minimum in coordinate space),
but it is able to circumvent energy barriers by interpolating
in chemical element space.
We now consider global ordering optimization of the

AuCu, Au3Cu, and AuCu3 bulk systems. The total number
of atoms for each supercell is 64 (see Fig. 2). Even though
all atoms are fixed at lattice positions, we train the surrogate
PES also on forces and thereby include additional infor-
mation about the local environment around the atoms.
Figure 2 shows the success curves for each system. The

FIG. 1. A single local optimization run of element fractions in AuCu bulk with 64 atoms in a unit cell. The training set consists of four
DFT calculations. The structures at different steps are shown above with the color saturation denoting the corresponding element
fractions (black, Au; white, Cu). The black lines indicate the computational supercell boundaries. Middle: the evolution of the element
fractions (where Au corresponds to 1 and Cu to 0) is shown for all atoms along the optimization. Lower: the energy predicted by the
surrogate model is shown. The optimization is seen to proceed to the ground state without getting trapped in metastable states.
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essential features of the PES are learned very quickly, as we
only need at maximum five DFT evaluations to obtain the
correct ordering in all of the ten runs per system. The
identified structures match the experimentally determined
ones at low temperatures [44]. Experimentally, AuCu
exhibits an interlayer expansion between the Au and Cu
layers breaking the cubic symmetry [44,45], but including
the distortion does not change the result, as discussed
further in the Supplemental Material [46].
We note that the algorithm does not know when the

global minimum ordering is found, and it thus continues the
search after the eight DFT evaluations shown in the figure.
It should be emphasized that the algorithm itself determines
which configurations to evaluate with DFT based on the
acquisition function. This ensures a balance between
relevant low-energy structures and exploration of new
configurations with large uncertainties.
To further investigate the applicability of ICE-BEACON,

we study a CuNi alloy with an fcc(111) surface. The
system is setup as a four-layer slab with a 4 × 4 surface
supercell and a fixed in-plane lattice constant of 3.583 Å
(64 atoms in total). We consider the situation with 16 Cu
atoms. The coordinates and chemical identities of the
bottommost Ni layer are fixed during the optimizations.
The GPAW calculations are run in spin-paired mode, but we
have verified that spin polarization has no effect on the
order of the energies for the final structures. The
RPBE functional [48] is used for the CuNi surface
systems.
The initial structures for the optimizations in the surro-

gate potential energy surfaces are obtained by rattling the

atomic coordinates by 0.05 Å around the lattice sites and
assigning random element fractions to the atoms in the
three top layers keeping the total number of Cu atoms at 16.
One example of an initial structure is shown in Fig. 3(a).
The result of an ICE-BEACON optimization with simulta-

neous optimization of the atomic positions and the element
fractions is shown in Fig. 3(b). This structure was proposed
as the global minimum by all of four individual optimi-
zation runs after three DFT calculations. The copper atoms
are seen to migrate to the surface, which is also what is
found experimentally [49].
In Fig. 3(c) we show the result of an ICE-BEACON

calculation where a CO molecule is placed on top of the
CuNi(111) surface. Again both atomic coordinates and
element fractions are optimized. A nickel atom is pulled to
the surface with the CO in an on-top position. This is in
agreement with the fact that the adsorption energy is larger
on Ni(111) than on Cu(111) [50], and this overcomes the
segregation energy of copper. Experimentally CO is
observed to occupy top sites in Cu-Ni(111) alloy surfaces
with mixing of the metal atoms [51], even though CO
prefers hollow sites on pure Ni(111) and Cu(111) [50]. The
effect of Ni atoms backsegregating to the surface exposed
to CO has also been observed experimentally [52].
The on-top site of CO is observed in, on the average, 20

DFT calculations in five out of a total of eight optimization
runs. One of the other runs suggests a bridge site, and one
run suggests a hollow hcp adsorption site. The last run does
not find a low-energy structure. In all cases, we find that the
CO molecule lifts Ni atoms to the neighboring sites. See

FIG. 2. Success curves for optimizing the ordering of AuxCuy
in a bulk fcc lattice using ICE-BEACON. For each system, ten
individual optimization runs are performed. The number of DFT
evaluations in the training set is shown on the x axis, while the
fraction of successful runs, where the correct structure is
identified, is shown on the y axis. The indicated uncertainties
are calculated with bootstrapping.

FIG. 3. Initial and optimal CuNi surface structures with 16 Cu
atoms out of a total of 64. (a) Typical initial structure before
optimization of the clean surface. The colors are linearly scaled
between those of Ni and Cu corresponding to the element
fractions of the atoms. (b) Optimal structure for the clean surface
system as found with ICE-BEACON with simultaneous optimiza-
tion of coordinates and fractions. The structure is found after
three DFT calculations in all of four runs. (c) Optimal structure
after introducing a CO molecule at the surface. We see that the
CO molecule pulls a Ni atom to the surface due to the stronger
chemisorption. During the optimizations, the bottommost layer is
fixed to be Ni in fixed positions. Colors: Cu, brown; Ni, light
gray; C, dark gray; O, red.
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Fig. S2 in the Supplemental Material [46] for the structures
and their energies.
As the most challenging example, we consider CuNi

clusters, where the metal atoms are not ascribed to lattice
sites, and both element fractions and atomic coordinates are
simultaneously optimized. We consider CuNi clusters with
a total of 23 atoms and varying content of nickel (3, 5, and
11 atoms). In Fig. 4, we compare the results of ICE-BEACON
with BEACON and find a considerable reduction in the
number of DFT calculations necessary to find the optimal
structure when using ICE-BEACON.
For each cluster stoichiometry, 20 ICE-BEACON optimi-

zation runs are performed and success is declared at the first
encounter of an energy within 0.05 eV of the minimum
energy encountered across all BEACON and ICE-BEACON
runs for the respective cluster stoichiometry. Subsequently,
it is checked that the structures within this energy range are,
in fact, identical. The initial structures for the random
searches in the surrogate PES are chosen with random
initial atomic coordinates within a box of size 8 × 8 × 8 Å3

and with random element fractions [see Fig. 4(a) for an
example]. The computational unit cell is a cube with side
length 16 Å.

Figures 4(b)–4(d) show the identified structures. For
three and five nickel atoms, the structure is a triple
icosahedron, where six atoms are shared by two of the
icosahedra and five atoms by all three. The latter are exactly
the five nickel atoms in Cu18Ni5. The cluster with 11 nickel
atoms exhibits an icosahedron of 11 nickel atoms and 2
copper atoms, with the icosahedron covered by additional
copper atoms (in the back in the figure). The structure with
three nickel atoms agrees with previous calculations based
on an interatomic potential [53].
In the cases with three and five nickel atoms, ICE-

BEACON finds the optimal structures with typically 20
DFT calculations, while BEACON requires considerably
more and does often not find the correct structure within
75 DFT calculations [see Fig. 4(e)]. With 11 nickel atoms,
the number of possible different Cu=Li decorations for
given atomic positions becomes larger than 106 and
BEACON does not identify the optimal structure in any of
the 20 runs. ICE-BEACON finds the structure in half of the
runs with 75 DFT calculations.
To summarize, we have introduced a method to simulta-

neously optimize atomic positions and chemical ordering
in atomic-scale systems. The method was illustrated with
applications to bulk, surface, and cluster systems. The
introduction of element fractions enables a significant
improvement for multielement systems compared to a
method like BEACON, which only works in coordinate space.
A striking feature of the method, and a key to its

performance, is that the interpolation between chemical
elements allows for the switching of atoms of different
types without an energy barrier. As a result, the element
fractions are not trapped in many metastable states during
optimization. Another remarkable feature is that, in most
cases, the final values for the element fractions are close to
0 or 1 as for real atomic materials. These features are
present for all applications shown here, but to which extent
this holds for other applications further research will show.
The approach can easily be extended to systems with

several different chemical elements and simultaneous
optimization of the unit cell, and further efficiency may
be obtained by training the model to smaller subsystems as
well. For systems where several different concentrations are
investigated, the surrogate model may benefit from a
common database with all the DFT calculations.
The code for ICE-BEACON is included in the GPATOM

package [54]. The current limitation with respect to speed is
due to the calculation of the fingerprint and its gradients at
each surrogate relaxation step, which, however, only scales
as OðNatomsÞ. For large systems, the inversion of the C
matrix (see Appendix) may be limiting because it scales
cubically with the number of atoms and the number of DFT
calculations included in the training set. Memory issues
related to the matrix inversion is currently limiting the
system size to around 100 atoms, but larger systems could
be treated with a more memory efficient parallelization.

(a) (b)  (c) (d)  

(e)  

(a) (b)  (c) (d)  

(e)  

FIG. 4. (a) Example of a random CuNi initial structure of a 23-
atom cluster generated in a cubic box (black lines) before
optimization in ICE-BEACON. The colors are linearly scaled
between those of Ni and Cu, corresponding to the element
fractions of the atoms. (b)–(d) The identified global minimum
structures for Cu20Ni3, Cu18Ni5, and Cu12Ni11, respectively, as
determined with ICE-BEACON. (e) Success curves for optimizing
the clusters with BEACON and ICE-BEACON up to 75 DFT
calculations based on 20 runs each. ICE-BEACON requires con-
siderably less DFT calculations than BEACON, and in the case of
11 nickel atoms, where the number of possible orderings exceeds
106, only ICE-BEACON finds the optimal structure.
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Appendix: Surrogate model and acquisition function.—
The fingerprint is the same that we use in BEACON with the
essential difference that now the atoms are represented as
fractional: each atom possesses the element fraction qA of
one of the two elements and the fraction qB ¼ 1 − qA of the
other element. We use

ρRABðr;q;xÞ¼
X

i∈A
j∈B

qi;Aqj;B
1

r2ij
fcðrij;RR

c Þe−jr−rijj2=2δ2R ðA1Þ

for a radial distribution function and

ραABCðθ; q;xÞ ¼
X

i∈A
j∈B
k∈C

½qi;Aqj;Bqk;Cfcðrij;Rα
cÞfcðrjk;Rα

cÞ

· e−jθ−θijkj2=2δ2α � ðA2Þ

for an angular distribution, where qi;A ∈ ½0; 1� is the
element fraction describing how much atom i is of element
A. In Eqs. (A1)) and (A2), rij is the distance between atoms
i and j, and fc is a smooth cutoff function with cutoff
distances Rc. The cutoff distances have RR

c ¼ 8 and
Rα
c ¼ 4 Å. The values for δR ¼ 0.4 Å and δR ¼ 0.4 rad

are also kept fixed. The full fingerprint is obtained by
concatenating the vectors created with Eqs. (A1)) and (A2)
for different element pairs and triples.
Energies and forces, μ ¼ ðE;−FÞ, are calculated with

the usual expression for a Gaussian process [55,56]

μðx; QÞ ¼ μpðxÞ þ Kðρðx; QÞ; PÞCðP;PÞ−1½y − μpðXÞ�;
ðA3Þ

where x is the atomic coordinates, Q are the element
fractions, μpðxÞ is the prior function, K and C are
covariance matrices, P is a matrix containing the finger-
prints for the training data, and y is the training targets. In
Eq. (A3), the covariance matrix K is the only quantity that
contains the information about the element fractions that
are stored in the vector Q for each atom. For details about
the construction of the matrices K and C and the vector y,
we refer the reader to the article about BEACON [27]. We use
a constant prior μpðxÞ ¼ μp and a squared-exponential
kernel with a distance measure given by the Euclidean
distance between the fingerprint vectors. Along an ICE-
BEACON run, the prior constant and the kernel hyper-
parameters are updated by maximizing the marginal log-
likelihood as also described in Ref. [27].

Within the Bayesian optimization, we use an acquisition
function f of the form of the lower confidence bound,
which reads

fðxÞ ¼ EðxÞ − 2ΣðxÞ; ðA4Þ

where ΣðxÞ is the uncertainty of the predicted energy,
provided by the Gaussian process [27,55,56].
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