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We predict that photonic moiré patterns created by two mutually twisted periodic sublattices in quadratic
nonlinear media allow the formation of parametric solitons under conditions that are strongly impacted by
the geometry of the pattern. The question addressed here is how the geometry affects the joint trapping of
multiple parametrically coupled waves into a single soliton state. We show that above the localization-
delocalization transition the threshold power for soliton excitation is drastically reduced relative to uniform
media. Also, the geometry of the moiré pattern shifts the condition for phase matching between the waves
to the value that matches the edges of the eigenmode bands, thereby shifting the properties of all soliton
families. Moreover, the phase-mismatch bandwidth for soliton generation is dramatically broadened in the
moiré patterns relative to latticeless structures.
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A fascinating range of wave phenomena stemming from
the geometrical properties of material landscapes are
continuously discovered in diverse areas of physics.
Moiré heterostructures arising as a result of mutually
rotated periodic structures are a salient example. In con-
densed matter they create a wealth of profound physical
effects, which have established a new research area referred
to as twistronics [1–4]. They are also important in cold
atomic systems, Bose-Einstein condensates, and optical
metasurfaces [5–7]. Moiré patterns afford the possibility to
explore phenomena caused by the purely geometrical
properties of aperiodic (incommensurate) or periodic
(commensurate) lattices, a condition that can be externally
tuned by varying the rotation angle of the sublattices.
Recently it was shown [8,9] that photonic moiré lattices

can be imprinted in photorefractive crystals by optical
induction [10,11]. These patterns are fully reconfigurable in
contrast to their material counterparts, therefore allowing
the observation of the two-dimensional localization-delo-
calization transition (LDT) [8] of light. In one dimension,
the effect had been observed for both light [12] and matter
waves [13]. The phenomenon is due to the flattening of the
spectral bands of the moiré pattern in the incommensurate
phase, and it occurs for linear waves. However, photonic
systems can be also nonlinear, affording the possibility to
explore the interplay between geometry and nonlinearity.
For example, lattice solitons [14,15] have been extensively
studied in periodic lattices [11,16–18] and aperiodic
quasicrystals [19–22] in materials with cubic Kerr or
saturable nonlinearity. Geometry-induced soliton formation

effects in moiré patterns in such materials have been
observed recently [23].
To date, soliton formation in parametric wave generation

in materials that exhibit quadratic, rather than cubic non-
linearities, in general moiré patterns remains unexplored.
Such processes involve waves at different frequencies that
thus exhibit different linear bandgap spectra set by the
transverse refractive index profile. Therefore, the geomet-
rical properties of the moiré pattern impact directly the
main control parameter of the wave interaction, namely the
phase-matching between the interacting waves. Such sol-
itons have been extensively studied in uniform media in
several parametric-mixing processes (see Refs. [24–30] and
references therein), as well as in discrete and continuous
periodic systems [31–46].
In this Letter we address the existence and, importantly,

the excitation of two-dimensional quadratic multiple-
frequency solitons under conditions of near-phase-matched
second-harmonic generation in moiré patterns imprinted in
bulk crystals, and show how variations of the rotation angle
and lattice depth of the sublattices impact the soliton
properties. We study how the geometrical properties of
the patterns modify the effective phase-matching between
the fundamental frequency wave and the parametrically-
generated second-harmonic wave, and how the flat-band
features induced by the pattern affect the threshold for
soliton existence, the power sharing between the funda-
mental and second-harmonic waves within the soliton
families, and the threshold of soliton excitation in sec-
ond-harmonic generation settings.
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We study the propagation of continuous-wave light
beams along the z axis in a medium with χð2Þ nonlinearity
and an imprinted refractive index distribution forming a
bulk moiré pattern. The system is described by the para-
metrically coupled paraxial nonlinear equations for the
dimensionless electric fields of the fundamental frequency
(FF), ψ1, and second harmonic (SH), ψ2, waves:

i
∂ψ1

∂z ¼ − 1

2
Δψ1 − ψ�

1ψ2e−iβz − PðrÞψ1;

i
∂ψ2

∂z ¼ − 1

2
Δψ2 − ψ2

1e
þiβz − 2PðrÞψ2: ð1Þ

Here Δ ¼ ∂2=∂x2 þ ∂2=∂y2, r ¼ ðx; yÞ is normalized to
the characteristic scale a, the propagation distance z is
scaled to the diffraction length k1a2, k1 ¼ n1ðωÞω=c,
and k2 ¼ n2ð2ωÞ2ω=c are the wave numbers of the FF
and SH waves at frequencies ω and 2ω, dimensionless
complex amplitudes of the FF and SH waves are given
by ψ1;2 ¼ ð2πω2χð2Þa2=c2ÞE1;2, where E1;2 are the dimen-
sional fields, χð2Þ is the relevant second-order suscepti-
bility for the employed phase matching scheme, β ¼
ð2k1 − k2Þk1a2 is the normalized phase mismatch.
Because of the difference of carrier frequencies, the optical
potential PðrÞ is approximately 2 times stronger for the
SH wave than for the FF wave. We assume that it repre-
sents a moiré pattern created by the superposition of two
square sublattices VðRrÞ and VðrÞ, where R ¼ RðθÞ is the
operator of 2D rotation in the ðx; yÞ plane by the angle θ:
PðrÞ ¼ jp1VðRrÞ þ p2VðrÞj2. The relative amplitudes of
two sublattices are given by p1;2 [the depth of the lattice
created by shallow linear dielectric susceptibilitymodulation
δχð1Þ is maxP ∼maxðδχð1ÞÞ2πðωa=cÞ2], while the profile
of each sublattice is given by VðrÞ ¼ cosðΩxÞ þ cosðΩyÞ.
Here we set Ω ¼ 2. Examples of moiré lattices PðrÞ are
presented in Figs. 1(a)–1(c). When the rotation angle equals
θ ¼ arctan½2mn=ðm2 − n2Þ�, m; n ∈ N, it corresponds to a
Pythagorean angle associated with the Pythagorean triple
ðm2 − n2; 2mn;m2 þ n2Þ and the lattice becomes exactly
periodic, or commensurate [see Fig. 1(a) corresponding
to ðm; nÞ ¼ ð2; 1Þ and Fig. 1(c) corresponding to ðm; nÞ ¼
ð3; 2Þ]. For all other angles the lattice is aperiodic, or
incommensurate [see Fig. 1(b)]. Tunable photonic moiré
lattices can be readily imprinted in photorefractive crystals
[7,23], including doped lithium niobate or potassium niobate
crystals, as demonstrated recently [47,48]. Several tech-
niques for critical (i.e., angle tuning) and noncritical (e.g.,
temperature tuning or QPM) phasematching in such crystals
are well established.
The geometry of the moiré lattice impacts strongly the

properties of the corresponding linear eigenmode spectrum.
One peculiarity of Eq. (1) is that the FF and SH waves
experience different optical potentials, thus the correspond-
ing linear spectra are different as well. We therefore first

omit the nonlinear terms in Eq. (1) and search for linear FF
and SH modes as ψ1;2 ¼ w1;2eibz, where b is the propa-
gation constant. Form factors χFF ¼ U−1

1 ½∬ jw1j4d2r�1=2 and
χSH ¼ U−1

2 ½∬ jw2j4d2r�1=2, where U1;2 ¼ ∬ jw1;2j2d2r is the
power, of linear mode with largest propagation constant
(the most localized mode) are plotted in Figs. 1(d),1(e) as a
function of the rotation angle θ and the depth of the
sublattice p2 at fixed p1. Large (small) form factors
correspond to well-localized (delocalized) modes.
Pythagorean angles correspond to deeps in χFF, χSH, i.e.,
in commensurate lattices the linear modes are always
delocalized Bloch waves. Transition from delocalization
(nearly zero form factors) to localization (form factors ∼1)
occurs only in the incommensurate lattices, when p2

FIG. 1. Examples of moiré lattices P with p2 ¼ 0.45 corre-
sponding to the rotation angles θ ¼ arctanð4=3Þ (a), θ ¼
arctanð3−1=2Þ (b), and θ ¼ arctanð12=5Þ. White arrows show
primitive translation vectors e1 ¼ ðπ=ΩÞ½ðmþ nÞiþ ðm − nÞj�,
e2 ¼ ðπ=ΩÞ½ðn −mÞiþ ðmþ nÞj� of the moiré lattice. Form
factors for the FF (d) and SH (e) linear modes supported by
the moiré lattices, versus p2 and θ. Linear band structures for FF
and SH waves in commensurate moiré lattices with θ ¼
arctanð4=3Þ at p2 ¼ 0.1 (f) and p2 ¼ 0.45 (g). Only the top
bands for both waves are shown. kx;y=K are normalized Bloch
momenta, K ¼ Ω½2=ðm2 þ n2Þ�1=2. (h) Band structures for the FF
wave in an incommensurate lattice with θ ¼ arctanð3−1=2Þ at
p2 ¼ 0.1 (black dots), p2 ¼ 0.45 (red dots), and p2 ¼ 0.7 (green
dots). To illustrate the band flattening for each p2 we subtracted
from b the propagation constant b0 corresponding to the top of
the band. In all cases p1 ¼ 0.3.
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exceeds a critical value that notably differs for the FF
(pcr

2 ∼ 0.51) and SH (pcr
2 ∼ 0.12) waves. An exactly incom-

mensurate lattice can be realized only in the entire ðx; yÞ
plane. The size of a unit cell of a commensurate moiré
lattice is finite, but it tends to infinity as the twist angle
approaches a non-Pythagorean one. In such limit the area of
the Brillouin zone tends to zero resulting in nearly ideal
flattening of the upper bands of the spectrum [illustrated in
Fig. 1(h)]. The described band flattening, however, is
different from the spectrum transformation in the tight-
binding limit that can be achieved in periodic lattices that
are deep enough [cf. Fig. 1(f) and Fig. 1(g); note, that in
Fig. 1(g) the FF top band appears just below its LDT
transition, while the SH wave is located well above its LDT
transition]. In the commensurate tight-binding limit no
localization is possible.
To calculate the linear spectrum of an incommen-

surate lattice, illustrated in Fig. 1(h), we used its approxi-
mation [8] by a commensurate structure generated by a
Pythagorean twist angle, approaching the non-Pythagorean
one. Above the LDT threshold the top band of this
approximation of incommensurate lattice (and a certain
number of bands below it) becomes nearly flat [already at
p2 ¼ 0.45 the width ∼0.003 of the FF top band in Fig. 1(h)
is much smaller than FF band width ∼0.159 in Fig. 1(g),
while at p2 ¼ 0.7 these band widths decrease down to
∼10−9 and ∼0.041, respectively]. In the subsequent analy-
sis, we consider moiré patterns in which the SH wave is
always above its LDT threshold, while the FF wave may be
below or above its LDT threshold.
To elucidate the impact of such band transformations on

soliton formation, we search for solutions of Eq. (1) in the
form ψ1 ¼ w1eibz, ψ2 ¼ w2eiðβþ2bÞz, where the propaga-
tion constants are chosen to describe coherent near-phase-
matched interaction between the FF and the SH waves. The
dependencies of soliton power U ¼ U1 þU2 on b are
shown in Fig. 2(a) under conditions where the FF wave in
the linear regime would be below the LDT threshold
(p2 < pcr

2 ), and in Fig. 2(b) for the case when the linear
FF wave would be above the LDT threshold (p2 > pcr

2 ),
both for commensurate and incommensurate lattices. They
reveal the existence of critical phase mismatch β ¼ βcr > 0
at which, within the accuracy of the numerical calculations,
the threshold power for soliton formation vanishes (in
uniform media it vanishes at β ¼ 0). For solitons whose
FF and SH are both originating from the semi-infinite
forbidden gap, the critical phase mismatch is given by
βcr ¼ bupp2 − 2bupp1 , where bupp1 and bupp2 are the upper edges
of the top band in the linear spectra of FF and SH waves,
respectively [see Fig. 1(f)–1(h)]. There exists a cutoff on
propagation constant for soliton existence given by bco ¼
ðbupp2 − βÞ=2 at β < βcr and bco ¼ bupp1 at β > βcr.
When the propagation constant b of the soliton

approaches the cutoff value and the phase mismatch is
β ¼ βcr, the total phase accumulation rates dϕ1;2=dz (where

ϕ1;2 are the instantaneous phases) for the FF wave
(evolving ∼eibz) and the SH wave (evolving ∼eiðβþ2bÞz)
simultaneously reach the upper edges bupp1 and bupp2 of the
top bands in their respective spectra. The value b ¼ bco
depends on whether the moiré lattice is commensurate or
incommensurate, and whether p2 is above or below the
LDT threshold. When the moiré lattice is commensurate,
both waves strongly broaden, turning into the respective
Bloch waves in the linear limit [an example of this
behavior, at β > βcr, is shown in Fig. 3(a)]. When the
moiré lattice is incommensurate, above the LDT threshold
in p2 both waves turn into linear modes and remain
localized [see Fig. 3(b)], while below the LDT threshold
for the FF wave at least one of them broadens. If β ≠ βcr the
top edge of the band at b → bco is reached by only one of
the waves (for β < βcr this occurs for the SH wave, while
for β > βcr this occurs for the FF wave).
The above result is accompanied by a qualitative change

of the power sharing between the FF and the SH waves in

FIG. 2. Total soliton power U versus propagation constant b for
(a) p1 ¼ 0.3, p2 ¼ 0.45 (below the LDT for the FF wave), and
(b) p1 ¼ 0.3, p2 ¼ 0.7 (above the LDT for the FF wave) and
different β values. Red curves correspond to the incommensurate
angle θ ¼ arctanð3−1=2Þ, open circles correspond to the com-
mensurate angle θ ¼ arctanð4=3Þ. βcr ≈ 1.2 in (a) and βcr ≈ 2.42
in (b). Fraction of power PSH carried by the SH wave versus b for
(c) p1 ¼ 0.3, p2 ¼ 0.45, and (d) p1 ¼ 0.3, p2 ¼ 0.7 and com-
mensurate angle θ ¼ arctanð4=3Þ. The curves in (c) correspond to
β ¼ 2.5, 1.21, 0.5 from bottom to top. The curves in (d) corre-
spond to β ¼ 3.5, 2.75, 2.45, 2, 1.5 from bottom to top. We
truncated the curves at β ≈ βcr in (c), (d) very close to cutoff
because their behavior in that region depends critically on the
value of β, which is only known numerically (i.e., with limited
accuracy).
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the soliton. Figures 2(c),2(d) show the fraction of power
carried by the SH wave PSH ¼ U2=U as a function of b for
a commensurate lattice (the dependencies are qualitatively
similar in the incommensurate case). At β < βcr the SH
dominates near the cutoff, while at β > βcr the FF domi-
nates. A remarkable result is that near β ¼ βcr the ratio PSH
is approximately constant for all propagation constants (for
the particular value of b chosen in the plot, it varies a bit
only very near cutoff, but we warn that such variation is due
to the unavoidable limited accuracy in the determination of
βcr), resembling the rigorous self-similarity rule that occurs
at exact phase-matching β ¼ 0 in the latticeless case
[30,49]. Therefore, the moiré lattice, through the bandgap
spectrum that it imposes, changes the conditions of the phase
matching, shifting phase-matching to the value β ¼ βcr,
where the threshold power for soliton existence vanishes.
The difference in the UðbÞ curves for commensurate and
incommensurate lattices is most pronounced close to cutoff,
when solutions extend across the lattice and experience the
details of the refractive index landscape (its periodicity or
aperiodicity), especially at β > βcr and below the LDT
threshold. Far from the cutoff, solutions shrink to the central
lattice spot in both periodic and aperiodic lattices [Fig. 3(c)].
As concerns the stability of the obtained solutions, they are
stable when dU=db > 0. As visible in the plot, such positive
slope is fulfilled by the families depicted in Fig. 2(a),(b),
except for one small branch in panel (a).
Band flattening induced by the geometry of the moiré

lattice dramatically impacts the behavior of the power
threshold for soliton existence as illustrated in Fig. 4 com-
paringUthðβÞ curves below [Fig. 4(a)] and above [Fig. 4(b)]
the LDT for commensurate and incommensurate moiré
lattices. For direct comparison, with blue dashed lines we
show the existence cone within which solitons exist in
uniform media. One can see that moiré lattices above the
LDT drastically reduce the threshold power for soliton
existence, especially at β > βcr (thus, at β − βcr ≈ 2.6 and
p2 ¼ 0.7 maximal over all angles power threshold in the
lattice maxθUth ≈ 0.28 is much smaller than threshold
Uth ≈ 15.2 in a uniform medium; the same holds true
for β − βcr < 0), and also that they greatly expand the

phase-mismatch bandwidth where solitons exist, and hence
can be excited, at a given power level. At fixed p2 the βcr
values are close for commensurate and incommensurate
lattices and are not distinguishable on the scale of Figs. 4(a),
4(b). While at β < βcr the power thresholds are nearly
identical in commensurate and incommensurate structures,
they differ strongly at β > βcr. This occurs even below the
LDT threshold inp2 [Fig. 4(a)], but ismost pronounced above
it [Fig. 4(b)]. Indeed, the commensurate lattice supports only
delocalized linear modes, so the FF wave strongly expands
near cutoff, while the total power always remains above the
minimal threshold value, similarly to 2D lattice solitons in
Kerr media [15]. In contrast, in the incommensurate lattice,
above the LDT soliton solutions transform into linear
localized modes at cutoff and therefore their power vanishes.
As a result, the threshold power varies with the angle [see
Fig. 4(c) for theUthðθÞ dependence below the LDT threshold
and Fig. 4(d) for this dependence above the LDT threshold].
As parametric solitons are typically excited experimen-

tally in second-harmonic generation schemes, i.e., using
FF inputs only, it is important to elucidate the excita-
tion dynamics. Thus, we solved Eq. (1) with the input

FIG. 3. Profiles of the FF and SH (insets) parts of the soliton
supported by the commensurate moiré lattice with θ ¼
arctanð4=3Þ at b ¼ 1.011 (a), and the incommensurate moiré
lattice with θ ¼ arctanð3−1=2Þ at b ¼ 1.011 (b) and b ¼ 1.5
(U ¼ 4.418) (c). In all cases p1 ¼ 0.3, p2 ¼ 0.7, β ¼ 4 > βcr.

FIG. 4. Threshold power for soliton existence Uth versus phase
mismatch β in commensurate [black dots, θ ¼ arctanð4=3Þ] and
incommensurate [red dots, θ ¼ arctanð3−1=2Þ] moiré lattices
below the LDT threshold for the FF wave at p1 ¼ 0.3, p2 ¼
0.45 (a) and above the LDT threshold at p1 ¼ 0.3, p2 ¼ 0.7 (b).
The blue dashed lines in (a), (b) depict the existence cone for
solitons in uniform media. Uth versus rotation angle θ below the
LDT threshold for the FF wave at p1 ¼ 0.3, p2 ¼ 0.45, β ¼
3.5 > βcr [note that the minima are not zeros] (c) and above the
LDT threshold at p1 ¼ 0.3, p2 ¼ 0.7, β ¼ 5 > βcr (d). At values
of β well below βcr the threshold power rapidly increases with
increase of βcr − β and is nearly independent of the angle θ.
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conditions ψ1jz¼0 ¼ a1e−r
2

, ψ2jz¼0 ¼ 0. Figure 5 com-
pares the approximate fraction of localized power Sðzp; βÞ,
defined as a ratio of the power U contained in the
eventually excited parametric soliton within a ring of radius
rS ¼ 2π=Ω at sufficiently large distance zp ≫ 1 and the
input power Ujz¼0 (carried only by the FF wave). The
dependence Sðzp; βÞ illustrates the obtained phase-
mismatch bandwidth corresponding to the dynamical
soliton excitation. For direct comparison we also show
the Sðzp ¼ ∞; βÞ dependence in a uniform medium
(open circles) [49]. One can see that even below the LDT
threshold (i.e., at p2 < pcr

2 for the FF wave), in the moiré
lattice the bandwidth at Ujz¼0 ¼ π=2 is comparable with
that obtained in a uniform medium atUjz¼0 ¼ 10π. In other
words, the power required for similarly efficient soliton
excitation is reduced by more than order of magnitude in
moiré structure. The phase-mismatch bandwidth expands
withUjz¼0 and always remains larger in the incommensurate
structure in comparison with the commensurate one [com-
pare Fig. 5(b) with 5(a)]. As expected, above the LDT
threshold the bandwidth expands even further because the
diffraction for the FF wave is drastically reduced.
In conclusion. the geometrically induced localiza-

tion properties of moiré patterns impact strongly the
existence and excitation conditions of quadratic multifre-
quency solitons. Under suitable conditions the threshold
for soliton excitation is drastically reduced, and the corre-
sponding phase-mismatch bandwidth is largely enhanced.
Remarkably, this is the case even in moiré patterns in which
only one of the interacting waves propagates under con-
ditions above its LDT. Here we addressed second-harmonic
generation configurations, but we anticipate that the uncov-
ered insight is relevant for all self-trapping mechanisms
mediated by parametric wave-mixing processes.
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