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It is shown that the Ablowitz-Kaup-Newell-Segur (AKNS) integrable hierarchy can be obtained as the
dynamical equations of three-dimensional general relativity with a negative cosmological constant. This
geometrization of the AKNS system is possible through the construction of novel boundary conditions for
the gravitational field. These are invariant under an asymptotic symmetry group characterized by an infinite
set of AKNS commuting conserved charges. Gravitational configurations are studied by means of SLð2;RÞ
conjugacy classes. Conical singularities and black hole solutions are included in the boundary conditions.
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Introduction.—Over the years, the significance of inte-
grable systems has been successfully demonstrated and
tested in almost all areas of physics. The applications range
from optical wave propagation in nonlinear media [1] to
nonlocal phenomena [2], self-interacting fermion systems
[3], and many other examples. Naturally, the notions of
integrability have reached curved space-time theories and
general relativity, for instance, by the Ernst equation [4] and
the inverse scattering method, both being used to solve the
Einstein equation in different scenarios [5]. More recently,
integrability aspects have been studied in the context of
AdS=CFT [6]. In the same line, twistor and self-dual Yang
Mills theories find also interesting connections with inte-
grable models [7,8]. The Ward conjecture explores the
possibility that all integrable systems find a common origin
as reductions of self-dual Yang Mills equations [9,10] and
has been checked for well-known examples such as
Korteweg-de Vries, sine-Gordon, nonlinear Schrödinger,
and the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy
[11]. The AKNS hierarchy is a fundamental integrable
model which encompasses and generalizes all mentioned
1þ 1 integrable systems and find its own physical appli-
cations in different scenarios [12]. In this Letter, we will
describe a new relationship between the huge family of
integrable models given by the AKNS hierarchy and the
space-time dynamics of general relativity with negative
cosmological constant. A broad class of compatible boun-
dary conditions for the gravitational field is constructed on

account of the diverse properties of the AKNS system.
This allows us to create a dictionary among gravity and
integrable features. Under this spirit, the paper is organized
as follows. First we demonstrate how the nonlinear inte-
grable AKNS hierarchy arises as the field equations of
general relativity in three dimensions with negative cos-
mological constant. Then, we show how the conserved
quantities inherent of AKNS give rise to a family of
nonequivalent boundary conditions for the gravitational
field. We finish by showing how the generic solutions
scheme of the AKNS system can be mapped into novel
gravitational solutions such as black holes.
Geometrization of AKNS.—Let us first consider a three-

dimensional spacetime manifold M, foliated by the coor-
dinates ðt; ρ;φÞ, where t represents time and ðρ;φÞ are
polar coordinates. The units are chosen such that t and ρ
have dimensions of length, whereas the angle φ is dimen-
sionless. Assume that the manifold is endowed with a
metric field whose line element, given in ADM decom-
position ds2 ¼ −N2dt2 þ ðNidtþ dxiÞðNjdtþ dxjÞgij, is
constructed in the following fashion. The lapse function has
the form

N2 ¼ ρ2

4l2

ðΩþω− þ Ω−ωþÞ2
ω−ωþ ; ð1Þ

while the shift vector components are given by

Nρ ¼ ρ

l

�
A− − Aþ þ 1

2
ðξþ þ ξ−Þ

�
Ω−

ω− −
Ωþ

ωþ

��
; ð2aÞ

Nϕ ¼ 1

2l

�
Ω−

ω− −
Ωþ

ωþ

�
: ð2bÞ

Additionally, the spatial metric reads
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gij ¼
 l2

ρ2
− l2

ρ ðξþ þ ξ−Þ
− l2

ρ ðξþ þ ξ−Þ l2ðξþ þ ξ−Þ2 þ ρ2ω−ωþ

!
: ð3Þ

The auxiliary functions Ω� and ω� are defined as

Ω� ≡ B� −
l2

ρ2
C∓; ω� ≡ p� þ l2

ρ2
r∓; ð4Þ

where l stands for the AdS3 radius. The spacetime metric
components contain two sets of dimensionless functions
fA�; B�; C�; p�; r�g, labeled by � superscript, and
chosen to depend only on the coordinates t and φ. On
the other hand, the two quantities ξ� are constants without
dimensions.
The main result of this work resides in the fact that

the dynamical evolution of the above geometry, according
to Einstein’s equations with a negative cosmological
constant Rμν − 1

2
Rgμν − ð1=l2Þgμν ¼ 0, implies the follow-

ing relations,

�_r� þ 1

l
ðC0� − 2r�A� − 2ξ�C�Þ ¼ 0; ð5aÞ

� _p� þ 1

l
ðB0� þ 2p�A� þ 2ξ�B�Þ ¼ 0; ð5bÞ

A0� − p�C� þ r�B� ¼ 0: ð5cÞ

Here the dot and prime stand for the temporal and angular
derivatives, respectively. Remarkably, Eqs. (5) are two
independent copies of the well-known AKNS system
and therefore, two copies of the zero curvature formulation
method from integrable systems [11].
As shown below, this geometrization of AKNS equations

is a direct consequence of a precise choice of boundary
conditions for the gravitational field, i.e., the specification
of the behavior of the metric field components near some
surface. Although some freedom is possible when adopting
boundary conditions for a gravitational theory, a reasonable
choice should fulfill a number of requirements [13]: (i) it
should render a well-defined action principle, (ii) it must be
invariant under a nontrivial group of asymptotic sym-
metries, whose generators are finite and integrable, (iii) it
must include physically interesting solutions, e.g., black
holes. The guideline for the remainder of this Letter is to
show the construction and consistency of boundary con-
ditions that relate the AKNS integrable system with the
dynamics of AdS3 Einstein gravity.
AKNS boundary conditions for the gravitational field.—

The construction of boundary conditions has a much
simpler pathway when carried out in the Chern-Simons
formulation of AdS three-dimensional gravity [14,15]. In
this approach, the theory is described by the difference of
two independent Chern-Simons actions with gauge group
SLð2;RÞ and level k ¼ l=4G, where G represents

Newton’s constant. The two gauge connections A� are
related to the dreibein e and spin connection ω by
A� ¼ ω� e=l. The first-order formulation of three-
dimensional gravity is captured by the torsionless condition
and the constant curvature equation (see, for example,
Ref. [16]). These equations, in turn, are equivalent to the
zero curvature conditions F� ¼ 0, where F� ¼ dA�þ
A� ∧ A�. The metric field can be constructed from the
gauge fields as

gμν ¼
l2

2
hðAþ

μ −A−
μ Þ; ðAþ

ν −A−
ν Þi; ð6Þ

where h; i is the invariant bilinear form of the gauge group.
The slð2;RÞ algebra is spanned by Ln generators, where
n ∈ f−1; 0; 1g, satisfying the commutation relation
½Ln; Lm� ¼ ðn −mÞLnþm. In this basis, the nonvanishing
components of the invariant bilinear form are hL1; L−1i ¼
−1 and hL0; L0i ¼ 1=2.
The boundary conditions comprise all the gauge fields of

the form [17]

A� ¼ b∓1ðdþ a�Þb�1; ð7Þ

where the connections a� ¼ a�φdφþ a�t dt depend only on
t and φ. Hence, the gauge group element bðρÞ completely
captures the radial dependence of the fields. Following
Ref. [18], the angular component reads as follows,

a�φ ¼∓ 2ξ�L0 − p�L�1 þ r�L∓1: ð8Þ

The component along L0 is chosen to be a constant without
variation at the boundary. The remaining components p�

and r� are the fields carrying the boundary dynamics of the
theory. In addition, the temporal component of the gauge
connection is given by

a�t ¼ 1

l
ð−2A�L0 � B�L�1 ∓ C�L∓1Þ: ð9Þ

As expected, the vanishing of the curvature two-form
coincides with Eq. (5).
Unless stated otherwise, only theþ copy is treated in the

following and the superscript � is removed. Similar consi-
derations can be applied to the − copy.
A further specification of the boundary conditions is

provided by choosing a precise form of the functions in at.
A broad family of inequivalent choices for A, B, and C with
remarkable properties can be constructed recursively; these
are polynomials in ξ with coefficients depending on p, r,
and its derivatives. In order to find them, it is useful to
assume a finite expansion in powers of ξ,
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A¼
XN
n¼0

Anξ
N−n; B¼

XN
n¼0

Bnξ
N−n; C¼

XN
n¼0

Cnξ
N−n;

ð10Þ

where N is an arbitrary positive integer. The ξ0 terms in
Eq. (5) then provide the dynamical equations

_r ¼ 1

l
ð−C0

N þ 2rANÞ; _p ¼ 1

l
ð−B0

N − 2pANÞ: ð11Þ

The remaining terms imply the following recursion rela-
tions for the coefficients in the expansion

A0
n ¼ pCn − rBn; ð12aÞ

Bnþ1 ¼ −
1

2
B0
n − pAn; ð12bÞ

Cnþ1 ¼
1

2
C0
n − rAn; ð12cÞ

along with B0 ¼ C0 ¼ 0. To find an explicit solution to the
recursion relations, it is useful to take into account of the
conserved quantities of the AKNS system. Indeed, equa-
tions (5) imply the existence of an infinite set of conserved
chargesHn, with n ∈ N, which can be obtained by a means
of a recursive manipulation of the AKNS equations [18].
The first quantities read

H1 ¼ 0; H2 ¼ −pr; H3 ¼
1

4
ðp0r−pr0Þ…; ð13Þ

where Hn ¼
R
Hndφ. The trivial quantity H1 is appended

for notation reasons. The recursion relations (12) can then
be explicitly solved for each coefficient [19], yielding
B0 ¼ C0 ¼ 0, A0 ¼ 1 and

An ¼
n − 1

2
Hn; Bn ¼ Rnþ1; Cn ¼ Pnþ1; ð14Þ

for n ≥ 1. All integration constants are fixed to zero, except
A0 ¼ 1. This choice does not alter the forthcoming analy-
sis. The quantities Rn and Pn correspond to variational
derivatives of the conserved charges Hn

Rn ≡ δHn

δr
; Pn ≡ δHn

δp
: ð15Þ

From the above discussion it is clear that different values
of the positive integer N give rise to distinct dynamics.
Hence, inequivalent choices of the boundary conditions are
labeled by the integer N. Several well-known integrable
equations arise as particular cases of the above construc-
tion: Korteweg–de Vries (N ¼ 3, r ¼ 1), modified
Korteweg–de Vries (N ¼ 3, r ¼ p), (Wick rotated) non-
linear Schrödinger (N ¼ 2), chiral boson (N ¼ 1), among

others. The Sine-Gordon equation is also included in this
framework, however, negative powers of ξ must be
included in the expansion in order to make it apparent.
This case and its connection to gravity will be addressed
elsewhere.
As a final comment for this section, it should be noted

that a bi-Hamiltonian structure for Eq. (11) can be revealed
by casting the equations conveniently as

�
_r

_p

�
¼ D1

�
RNþ1

PNþ1

�
: ð16Þ

The first Hamiltonian operator D1 can be read from
Eq. (12), yielding

D1 ¼
1

l

� −2r∂−1
φ ðr·Þ −∂φ þ 2r∂−1

φ ðp·Þ
−∂φ þ 2p∂−1

φ ðr·Þ −2p∂−1
φ ðp·Þ

�
: ð17Þ

Alternatively, by virtue of the recurrence relation (12), the
dynamical equations can also be written as

�
_r

_p

�
¼ D2

�
RNþ2

PNþ2

�
; ð18Þ

where the second Hamiltonian operator is given by

D2 ¼
1

l

�
0 −2
2 0

�
: ð19Þ

The operators D1 and D2 are compatible, in the sense that
the combination D1 þD2 is also a Hamiltonian operator
[20]. This observation is intimately related to the recurrence
relation (12), which can then be expressed as

�
Rnþ1

Pnþ1

�
¼ D−1

2 D1

�
Rn

Pn

�
: ð20Þ

Consistency of the boundary conditions.—The above
construction provides a complete framework to address the
question whether Eqs. (7), (8), and (9) define an adequate
set of boundary conditions.
Concerning the construction of a well-defined action

principle, the Chern-Simons action should be supple-
mented with a boundary term B such that the variation
of the action vanishes on shell. The variation of such
boundary term reads

δB ¼ −
k
2π

Z
dtdφhat; δaφi: ð21Þ

By virtue of Eq. (14), this expression readily integrates to
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B ¼ k
2π

Z
dt
l

XN
n¼0

ξN−nHnþ1; ð22Þ

which then renders the action differentiable, as needed.
Regarding asymptotic symmetries, they correspond to

the family of infinitesimal gauge transformations

δa ¼ dΛþ ½a;Λ�; ð23Þ

which respect the form of the boundary conditions (8) and
(9). In order to find them, consider a general gauge
parameter Λ ¼ −2αL0 þ βL1 − γL−1. The angular compo-
nent of the transformation (23) yields equations analogous
to Eq. (5). As a result, the functions α, β, and γ are

α ¼
XM
n¼0

ðn − 1Þ
2

Hnξ
M−n; ð24aÞ

β ¼
XM
n¼0

Rnþ1ξ
M−n; ð24bÞ

γ ¼
XM
n¼0

Pnþ1ξ
M−n; ð24cÞ

where M is a positive integer (not necessarily equal to N).
Here, M labels an infinite family of permissible gauge
transformations. The infinitesimal transformation of the
fields r and p are then given by

δr ¼ −γ0M þ 2rαM; δp ¼ −β0M − 2pαM: ð25Þ

From the Hamiltonian point of view, the gauge trans-
formation (23) is generated by the boundary termQ½Λ� that
must be supplemented to the first class constraint in order to
yield it differentiable [21]. Its variation is given by

δQ½Λ� ¼ k
2π

Z
dφðβδrþ γδpÞ; ð26Þ

which, by virtue of Eq. (24), can be integrated to

Q½Λ� ¼ k
2π

XM
n¼0

ξM−nHnþ1: ð27Þ

The generators of this family are in involution, i.e., span an
Abelian algebra fQ½Λ�; Q½Λ̄�g ¼ 0, where the brackets
stand for the canonical Poisson bracket [22].
It is clear by construction that at belongs to the above

family of permissible gauge parameters at ¼ ð1=lÞΛjM¼N .
Consequently, the time evolution of the system also
respects the boundary conditions, as it should. In addition,
regarding the effect of the asymptotic symmetry trans-
formation Λ acting on at, the temporal component of

Eq. (23) reduces to combinations of the equations of
motion (11) and the infinitesimal transformations of the
fields (25). Thus, it does not imply any further condition on
the gauge parameter [24].
To finalize this section, let us briefly discuss

some properties of the spacetime geometry defined by
Eqs. (1), (2), and (3). The spacetime metric can be
constructed by means of Eq. (6), considering a radial
group element chosen as b�ðρÞ ¼ exp½� logðρ=lÞL0�.
Note that the boundary dynamics arises from the asymp-
totic behavior of the lapse function and shift vector [25],
which depend on the dynamical functions and conse-
quently induce a nontrivial surface evolution at the boun-
dary. This property has been used previously in
Refs. [26,27] to connect the dynamics of AdS3 general
relativity with the KdVand Gardner integrable hierarchies,
respectively.
The parameters ξ� are absent from the field equa-

tions (11). However, for a given solution of Eq. (11),
different values for the parameters corresponds to non-
equivalent geometries. Indeed, classical solutions in three-
dimensional gravity can be classified by the trace of the
holonomy of the gauge connection along the angular
cycleM� ¼ TrðP exp

H
A�
φdφÞ, which is a gauge invariant

quantity. It characterizes the three conjugacy classes of
SLð2;RÞ, describing different kinds of spacetimes [28]. In
the present case, it yields

M� ¼ 2 cosh ð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ�Þ2 þ p�

0 r
�
0

q
Þ; ð28Þ

where, p�
0 and r�0 are the zero modes of the Fourier ex-

pansions p�¼Pnp
�
n expðinφÞ and r�¼Pnr

�
n expðinφÞ.

If M� < 2, the configuration represents the elliptic con-
jugacy class and corresponds to classical particle sources,
inducing conical singularities. The case M� > 2 typifies
hyperbolic elements of SLð2;RÞ that characterize black
hole solutions. The last possible scenario,M� ¼ 2, leads to
parabolic conjugacy classes and describe extremal black
holes.
Remarkably, the three above configurations are attain-

able. If p�
0 and r�0 are both positive or both negative, the

solutions generically represent non stationary black holes.
Conical singularities and extremal black holes are obtained
if p�

0 and r�0 have opposite signs, while selecting a suitable
value for ξ�, which as mentioned before, is not fixed by the
dynamical equations.
Once a solution of the equations of motion (11) is found,

the geometry described by Eqs. (1), (2), and (3), renders a
solution of three-dimensional Einstein’s equations. Hence,
it corresponds to a locally AdS spacetime. The global
properties described by zero modes can be constructed by
means of identifications of global AdS [29]. Higher order
modes, characterized by AKNS charges, correspond to
large gauge transformations (25). Furthermore, there are
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nonpermissible gauge transformations that do not preserve
the boundary conditions (8) and (9), such as locally
recasting the metric into different forms, for example, into
a conformally flat spacetime or near horizon geometries
[30]. Their action map spacetimes with different asymptotic
behavior leading to distinct conserved charges and
symmetry algebras. One example of this issue was found
in Ref. [30], where the relationship between Brown-
Henneaux and the soft hairy black holes boundary
conditions was established. Analogously, integrable sys-
tems can also be related through a gauge transformation,
like the nonlinear Schrödinger and Landau-Lifshitz equa-
tion [31]. The connection between these gauge-related
integrable systems and the nonpermissible gauge trans-
formation in the gravitational formalism can be studied
from both angles.
Final remarks.—The family of boundary conditions

constructed here encompasses some examples found in
the literature. The well-known Brown-Henneaux case [32]
can be recovered if N� ¼ 1, r� ¼ 1, and then setting
ξ� ¼ 0. Additionally, the family of KdV boundary con-
ditions found in Ref. [26] is recovered for r� ¼ 1, odd
values of N� and vanishing ξ�. The relation between this
hierarchy and black hole properties is studied in Refs. [33–
35]. A detailed discussion of how this work relates to
several other boundary conditions for AdS3 gravity [27,36–
38] will be given elsewhere.
Regarding the physical significance of the infinite

conserved charges, it is worth mentioning that if a gravi-
tational configuration describing a black hole is endowed
with nonzero AKNS charges, these can be considered “soft
hair” [39] in the following sense. The conserved quantities
commute with the total gravitational Hamiltonian, which is
given by Qþ½aþt � þQ−½a−t �. Hence, the gauge transforma-
tions generated by Q�½Λ�� map a black hole configuration
into a physically inequivalent one, without changing the
energy of the system.
Several questions arise concerning the gravitational

counterpart of well-established methods and results in
the literature. For example, what is the meaning of the
different generating solution schemes, e.g., Darboux trans-
formations or Hirota method, in the gravity side? How are
these results connected with the self-dual Yang Mills
description of integrable systems? Is there a gravity
analog for those integrable systems related by gauge
transformations?
Further generalizations of this work can be pursued. To

mention a few, the case of vanishing cosmological constant
should be related to the integrable hierarchy constructed out
of non-semi-simple algebras [40] that include the Poincaré
case. Similarly, three-dimensional higher spin gravity on
AdS3 [41,42] should be related to the integrable dynamics
of slðN;RÞ generalizations of AKNS system. See Ref. [43]
for a recent example.
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