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Using Monte Carlo computer simulations, we study the impact of matter fields on the geometry of a
typical quantum universe in the causal dynamical triangulations (CDT) model of lattice quantum gravity.
The quantum universe has the size of a few Planck lengths and the spatial topology of a three-torus. The
matter fields are multicomponent scalar fields taking values in a torus with circumference δ in each spatial
direction, which acts as a new parameter in the CDT model. Changing δ, we observe a phase transition
caused by the scalar field. This discovery may have important consequences for quantum universes with
nontrivial topology, since the phase transition can change the topology to a simply connected one.
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Introduction.—The problem of merging general relativ-
ity and quantum mechanics in a theory of quantum gravity
has been approached from many directions (string theory
[1], loop quantum gravity [2], and the so-called asymptotic
safety program using conventional quantum field theory
[3], to mention some of the approaches), but no completely
satisfactory formulation has yet been found. Difficulties
occur already for the pure gravity case, but an additional
complication comes from the fact that any realistic theory
of quantum gravity should also include coupling to matter
fields. The question arises: what type of matter can be
included in a particular approach and what impact does it
have on the underlying (quantum) geometric degrees of
freedom? In this Letter we argue that the impact of matter
can be quite dramatic even leading to a change of the
topology of the Universe.
Causal dynamical triangulations.—Our attempt to

examine the above-mentioned question is via a nonpertur-
bative lattice approach to quantum gravity with the name
causal dynamical triangulations (CDT)—see [4] for its
detailed formulation and [5] for a recent review. It is an
approach which lies within the asymptotic safety program
and is only using ordinary quantum field theory concepts.
In CDT, the (formal) path integral of quantum gravity is
lattice regularized as a sum over four-dimensional simpli-
cial complexes, called triangulations, which encode
geometric degrees of freedom; crucially, they are assumed
to be endowed with a causal structure of a globally
hyperbolic manifold (i.e., spacetime is foliated into spatial

hypersurfaces of fixed and identical topology), which
allows a well-defined Wick rotation of the time coordinate.
Thus,

ZQG ¼
Z

DMH
½g�

Z
Dϕ eiSEH½g�þiSM ½ϕ;g� →

→
X
T∈T

Z
Dϕe−SR½T�−SCDTM ½ϕ;T� ¼ ZCDT; ð1Þ

where MH is a globally hyperbolic Lorentzian manifold,
DMH

½g� denotes the integration over geometries, i.e.,
equivalence classes of metrics [g] on MH with respect
to diffeomorphisms, and T is a suitable set of Wick-rotated
(now Euclidean) triangulations. The action SR½T� for a
triangulation T ∈ T is the Einstein-Hilbert action SEH
computed using Regge’s method of describing piece-
wise-linear geometries [6] and containing the bare cou-
plings related to the cosmological and Newton constants.
The second term of the action SCDTM ½ϕ; T� is the discrete
version of the continuous action SM for matter field(s) ϕ.
Quantum matter fields in CDT.—The simplest quantum

matter that can be added to the quantum geometry of CDT is
a d-component massless scalar field ϕ. In general, one can
assume that the field ϕ has a nontrivial target space, i.e., it is
a map MHðgμνÞ → N ðhαβÞ between an arbitrary manifold
MH [from the path integral (1)] with a metric gμν and a
target space N with some fixed metric hαβ and fixed
topology. The continuous (Euclidean) action SM takes the
form

SM½ϕ; g� ¼
1

2

Z
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gμνðxÞ hρσ½ϕγðxÞ�

× ∂μϕ
ρðxÞ∂νϕ

σ ðxÞ: ð2Þ
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Here, we choose the target space N of the scalar field to
have either EuclideanRd or toroidal ðS1Þd topology, and we
fix the flat metric hρσ ¼ δρσ onN . Consequently, the action
(2) reads

SM½ϕ; g� ¼
1

2

Xd
σ¼1

Z
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞ

p ∂ν ϕσ ðxÞ∂νϕ
σ ðxÞ; ð3Þ

and the various components decouple for different σ
because the target space metric is diagonal. For a particular
sample geometry [g], quantum fluctuations of ϕσ will occur
around a semiclassical solution ϕ̄σ satisfying the Laplace
equation

Δxϕ̄
σðxÞ ¼ 0; Δx ¼

1ffiffiffiffiffiffiffiffiffi
gðxÞp ∂μ

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
gμν ðxÞ∂ν: ð4Þ

Let us now start with a simple case where the target space of
the scalar field is N ¼ Rd. In CDT we consider the scalar
field as located at the centers of equilateral simplexes, and
thus the discrete counterpart of the action (3) takes a very
simple form

SCDTM ½ϕ;T�¼1

2

Xd
σ¼1

X
i↔j

ðϕσ
i −ϕσ

j Þ2¼
X
σ;i;j

ϕσ
iLijðTÞϕσ

j : ð5Þ

The sum
P

i↔j is over the five pairs of neighboring four-
simplexes of each simplex i in the triangulation T of the
manifold MHðgμνÞ and L ¼ 51 −A is the Laplacian
matrix, where Aij is the adjacency matrix with entries of
value 1 if simplexes i and j are neighbors and 0 otherwise.
The discrete version of the Laplace equation (4) for each
component of the classical scalar field is then

Lϕ̄σ ¼ 0; ð6Þ

which is solved by ϕ̄ ¼ const (the Laplacian zero mode) for
any compact simplicial manifold T. After the decomposi-
tion of the field

ϕσ ¼ ϕ̄σ þ ξσ ð7Þ

into the classical part ϕ̄σ and the quantum part ξσ and an
application of (6), the contribution from the classical field
vanishes, leaving

SCDTM ½ϕ; T� ¼ 1

2

Xd
σ¼1

X
i↔j

ðξσi − ξσj Þ2 ¼
X
σ;i;j

ξσiLijðTÞξσj : ð8Þ

The Gaussian form of the matter action (8) means that, in
principle, the field can be integrated out, contributing to the
geometric action SR½T� → SR½T� þ SeffM ½T� with a term

SeffM ½T� ¼ d
2
log det½L0ðTÞ�; ð9Þ

where L0ðTÞ is the Laplacian matrix LðTÞ in the
subspace orthogonal to the constant zero mode of L.
The dependence of Eq. (9) on the geometry rests in the
dependence ofL0ðTÞ on the adjacency matrixA defined for
a given triangulation T. Using numerical Monte Carlo
simulations we checked that the dependence of the deter-
minant SeffM ½T� on T is weak and, in practice, we can treat it
as a constant.
Quantum scalar fields with values on ðS1Þd.—The new

aspect studied here is based on two major generalizations of
the CDT model: (1) We choose the spatial topology of the
time foliation leaves to be ðS1Þ3, and for technical reasons
we assume the time boundary conditions to be periodic as
well. Thus, each triangulation has the toroidal topology
ðS1Þ4 and can equivalently be represented as an elementary
cell periodically repeated in four dimensions. There is a lot
of freedom in the selection of the elementary cell; one way
to determine it is to choose four independent noncontrac-
tible three-dimensional boundaries delimiting it. The boun-
daries are connected sets of three-dimensional faces,
each shared by two four-simplexes located in different
copies of the elementary cell. We assume each boundary to
be oriented, and we encode the information about the
position of the four boundaries (labeled by σ ¼ 1, 2, 3, 4)
in a triangulation T within four matrices Bσ, whose
elements are

Bσ
ij ¼

8<
:

�1 if the face shared by simplexes i and j

exists and belongs to the boundary

0 otherwise:

ð10Þ

The number of directed boundary faces of a simplex i is
given by bσi ¼

P
jB

σ
ij, and the boundary three-volume is

Vσ ¼ 1
2

P
ij ðBσ

ijÞ2. Despite being fictitious constructs
having no impact on the physics, the boundaries can
be used to define a coordinate system, as described
in [7,8].
(2) The d-component scalar field ϕ is assumed to take

values on a symmetric torusN ¼ ðS1Þd with circumference
δ in each direction. We require that each component of the
field ϕσ ∈ S1 winds around the circle once as we go around
any noncontractible loop in T that crosses a boundary in
direction σ. This requirement completely changes the
dynamics of the interaction between geometry and the
scalar field. For the scalar field taking values in Rd,
the classical solution is constant and does not contribute
to the matter action, which depends therefore only on
quantum fluctuations. For ϕσ ∈ S1, however, the constant
solution is not allowed, since it has winding number zero;
as we will show below, the new nontrivial classical solution
does contribute to the effective matter action. The winding
condition can technically be obtained by considering a field
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ϕσ ∈ R that jumps by δ ×Bσ
ij on any face shared by

simplexes i and j and identifying

ϕσ
i ≡ ϕσ

i þ n × δ; n ∈ Z: ð11Þ

The (discrete) matter action becomes

SCDTM ½ϕ; T� ¼ 1

2

Xd
σ¼1

X
i↔j

ðϕσ
i − ϕσ

j − δ ×Bσ
ijÞ2 ð12Þ

leading to the following equation for the classical field ϕ̄σ:

Lϕ̄σ ¼ δ × bσ; ð13Þ

which now acquires a boundary term and thus admits
nontrivial solutions for ϕ̄σ. Note that the action (12) is
invariant under a local shift of the σ-boundary with a
simultaneous change of the scalar field value ϕσ

i → ϕσ
i � δ.

Thus the choice of a specific boundary does not influence
the path integral (1) in any way. Decomposition (7) of the
field into the classical and the quantum part yields

SCDTM ½ϕ; T� ¼
X
σ;i;j

ξσiLijðTÞξσj þ SCDTM ½ϕ̄; T�: ð14Þ

Since ϕσ and ϕ̄σ have winding number one, the fluctuation
field ξσ is a scalar field with winding number zero, i.e., an
ordinary scalar field taking values in R. The action (14) is
then again Gaussian and can be integrated out, now leading
to SR½T� → SR½T� þ SeffM ½T� þ SCDTM ½ϕ̄; T�, where the deter-
minant SeffM ½T� is the same as in Eq. (9). Thus the only
difference between the impact of the scalar field in ðS1Þd
and that of the ordinary field in Rd is the dependence of the
effective matter action on the nontrivial classical solution ϕ̄;
note that the size of the jump δ fixes the scale of the
classical field. For δ ¼ 0 one recovers the Rd case where
SCDTM ½ϕ̄; T� is zero (the absolute minimum), as ϕ̄ ¼ const
for any quantum geometry T. For δ > 0 the constant
solution is not allowed, and the action SCDTM ½ϕ̄; T� depends
on the specific geometry T. By adjusting the geometry in a
rather drastic way, one is still able to reduce the matter
action almost to zero. This is illustrated in Fig. 1 in the
simple case of a two-dimensional torus with a one-
dimensional field ϕ changing in the vertical direction,
but the argument is clearly valid in higher dimensions, and
in fact it only depends on one direction being periodic. The
topology in the “transverse” directions can be anything. On
the left plot we have a torus with volume V and vertical
length LV , which is pinched to a cylinder of circumference
ε and length L. The total matter action of the field
configuration alluded to on the plot is

SCDTM ½ϕ; TL� ¼
�
δ

L

�
2

Lε ¼ δ2
ε

L
; ð15Þ

and the minimal action for a classical field configuration
SCDTM ½ϕ̄; TL� for this geometry is even lower. This can
clearly be made arbitrarily small when ε → 0, and this is
even more true in higher dimensions. On the right plot we
also have a torus with volume V and vertical length LV . For
this geometry, the action is minimal for a field changing
uniformly from 0 to δ, when we move from bottom to top,
thus obtaining an action

SCDTM ½ϕ̄;TR�¼
�

δ

LV

�
2

LVLH¼δ2
V
L2
V
; V¼LHLV; ð16Þ

which is bounded from below when V and LV are fixed. Let
us discuss the consequence of this in the full quantum
theory defined by the path integral (1). The classical action
SCDTM ½ϕ̄; T� depends in a crucial way on the triangulation T.
The triangulations that are pinched as shown in Fig. 1 will
have the smallest matter action, but the geometric Einstein-
Hilbert part of the action will be larger for such pinched
configurations than for “regular” triangulations. A simple
minisuperspace model, like the Hartle-Hawking model [9],
suggests that for small jumps δ the geometric part of the
action dominates and the generic configurations in the path
integral are quite similar to the ones which dominate when
no matter field with a jump is present. However, for large δ
the total action will be the lowest for pinched configura-
tions and the system will instead fluctuate around pinched
configurations. Thus, the system might undergo a phase
transition as a function of the jump magnitude δ.
Results for scalar fields winding around spatial

directions.—Below, using numerical Monte Carlo simula-
tions, we study a CDT model with a d ¼ 3 component
massless scalar field taking values in a symmetric torus
N ¼ ðS1Þ3 with circumference δ, i.e., ϕσ jumps by �δ
when crossing a three-dimensional boundary orthogonal to
one of three independent noncontractible loops winding
around the toroidal spatial direction σ ¼ x, y, z in a

LH

VL

Volume = VVolume = V

L/2

L/2

FIG. 1. Left: a torus (opposite sides identified) with a pinch.
The region in red is the region where ϕ changes from 0 to δ. In the
blue part it stays constant. ϕ is constant in the horizontal
direction. Right: a torus where ϕ is constant in the horizontal
direction and uniformly increases from 0 to δ from bottom to top.
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triangulation T. This type of matter system was earlier
introduced to define a semiclassical coordinate system for a
given CDT triangulation [8]. Now we want to make the
scalar field a dynamical (quantum) object and let it evolve
together with the geometry. Then, for a given geometric
configuration T, one can simply compute the expectation
value of the field hϕi ¼ ϕ̄ by solving the Laplace equa-
tion (13) and use it as spatial coordinates. The analyzed
systems were all in the same point in the CDT parameter
space inside the so-called semiclassical (or de Sitter) phase
[10–12], and the only variable parameter was the jump
magnitude δ. For each analyzed value of δ we pick a
generic quantum geometry (a triangulation T) appearing in
the path integral (1), and we use the methodology intro-
duced in [8] to assign a unique set of spatial coordinates for
each simplex i defined by the classical solution of the scalar
field ðϕ̄x

i ; ϕ̄
y
i ; ϕ̄

z
i Þ computed for that geometric

configuration. Note that in CDT one has the time coordinate
“for free” as the classical solution of the field ϕ̄t

i can be
computed using the imposed proper-time foliation. In order
to visualize changes in a typical quantum geometry
triggered by the increasing jump magnitude, we measure
the four-volume density distribution Nðϕ̄Þ, i.e., the number
of simplexes contained in hypercubic blocks with sizes
ðΔϕ̄x

i ;Δϕ̄
y
i ;Δϕ̄

z
i ;Δϕ̄t

iÞ, which is equivalent to measuring

the integrated
ffiffiffiffiffiffiffiffiffi
gðϕ̄Þ

p
:

ΔNðϕ̄Þ ¼
ffiffiffiffiffiffiffiffiffi
gðϕ̄Þ

q Y
σ

Δϕ̄σ ¼ Nðϕ̄Þ
Y
σ

Δϕ̄σ: ð17Þ

In Figs. 2 and 4 we plot projections of the volume density
distribution Nðϕ̄Þ in a typical toroidal CDT configuration on
one spatial direction (x, y, or z), and in Figs. 3 and 5 the
projections on two-dimensional (x-y directions) parameter

FIG. 2. The projection of four-volume, as defined by (17), on
one spatial direction (x, y, or z) for a typical CDT configuration
with small jump magnitude (δ ¼ 0.1). The horizontal axis is ϕ̄=δ.

FIG. 3. The projection of four-volume, as defined by (17), on
the xy plane for a typical CDT configuration with small jump
magnitude (δ ¼ 0.1). Different colors correspond to different
times t of the original (lattice) time foliation.

FIG. 4. The projection of four-volume, as defined by (17), on
one spatial direction (x, y, or z) for a typical CDT configuration
with large jump magnitude (δ ¼ 1.0). The horizontal axis is ϕ̄=δ.

FIG. 5. The projection of four-volume, as defined by (17), on
the xy plane for a typical CDT configuration with large jump
magnitude (δ ¼ 1.0). Different colors correspond to different
times t of the original (lattice) time foliation.
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subspace, integrating over the remaining directions.
Figures 2 and 3 are for a small (δ ¼ 0.1), while Figs. 4
and 5 for a relatively large (δ ¼ 1.0) jump magnitude,
respectively. One clearly observes that the change of the
jump magnitude causes a substantial change in a typical
CDT geometry. For a small jump (δ ¼ 0.1) one observes a
geometry which resembles the pure gravity case, see [8].
For a large jump (δ ¼ 1.0), in line with expectations, one
observes that the geometry is “pinched” in all spatial
directions (which manifests itself as the small-volume
region in Fig. 4 and the low-density region in Fig. 5).
Discussion.—We have shown that if spacetime is glob-

ally hyperbolic and has the toroidal spatial topology, i.e.,
has three nonequivalent noncontractible loops in the spatial
directions, then the three-component scalar field with
matching topological boundary conditions imposed can
have a dramatic effect on the geometries that dominate the
CDT path integral. If the spatial topology is simply con-
nected, this effect is absent. This new kind of coupling
between the topology of the matter fields and the topology
of spacetime is likely to result in a phase transition for
sufficiently strong coupling (sufficiently large δ in our
model), a transition where the path integral will be
dominated by spatial geometries with pinched regions
fluctuating close to zero sizes (but still connected due to
topological restrictions imposed by our model). This is
schematically shown in Fig. 1 and for actual configurations
in the path integral in Figs. 4 and 5, using as coordinates in
the noncontractible “directions” the classical scalar fields
with nontrivial boundary conditions in these directions, and
what is also visible using other coordinate systems, e.g., the
ones introduced in [7]. Extrapolating this result to a large
volume limit we get a picture with a small toroidal part of
cutoff size and the dominating geometry with an (almost)
spherical topology. Concluding, the effect of scalar fields
can be much more drastic than previously appreciated, with
possible implications for cosmological model building and
even in other areas of physics related to phase transitions of
topological nature.
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