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We investigate the effect of coupling between translational and internal degrees of freedom of composite
quantum particles on their localization in a random potential. We show that entanglement between the two
degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio
by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a
harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the
coupling has a dramatic effect on localization properties, even with a small number of internal states
participating in quantum dynamics.
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Anderson localization (AL) [1], or lack thereof, deter-
mines propagation of waves through disordered media. As
such, it has been explored in a wide range of contexts,
including quantum thermalization [2,3], quantum walks
[4,5], complex networks and graphs [6,7], open system
dynamics [8–12], quantum chaos [13,14], and adiabatic
quantum computation [15]. While Anderson originally
studied noninteracting particles in disordered crystalline
lattices, recent work has elucidated the effect of interactions
[16–23], dimensionality [24,25], and hopping range [26],
demonstrating interesting phenomena such as cooperative
shielding [27], making particles with long-range hopping
localize effectively as those with short-range hopping. The
fundamental importance of localization of quantum par-
ticles has stimulated the development of a wide range of
experimental platforms aiming to observe AL directly
[28,29], culminating in the imaging of Anderson-localized
states with ultracold atoms in optical lattices [30,31]. At the
same time, AL was re-examined in the context of
coherent energy transfer in photosynthetic light-harvesting
systems, organic photovoltaics, conducting polymers, and
J-aggregate thin films [32–41]. In such systems, energy is
carried by excitons and exciton-polarons, which may
undergo localization.
While previous studies considered AL of structureless

particles, these recent experiments suggest the possibility of
observing AL of quantum particles with internal structure.
It has now become possible to trap ultracold molecules
in optical lattices [42]. This paves the way for studying
the effects of molecular rovibrational structure on AL of
ultracold molecules. It was also demonstrated that excitons
may form bound pairs, even in the Frenkel exciton limit
[43,44], where exciton pairs are comparable in size to
lattice spacing. Similarly, polarons in conducting polymers

may bind into bipolarons with light effective mass [45,46].
The quantum behavior of those composite particles can be
strongly affected by their internal degrees of freedom
[44,47–52]. Although quantum transport of structureless
particles coupled to an external environmental bath has
been well studied [32], the effect of internal dynamics of
such bound pairs on AL has not been thoroughly inves-
tigated. Understanding it is of key importance for the
prospects of organic photovoltaics and bipolaronic super-
conductivity in organic materials.
Here, we study the effect of coupling between transla-

tional motion and internal states of composite quantum
particles on their localization. We first present general
arguments illustrating delocalization induced by coupling
to internal states. We formulate the problem as localization
of states in space of one of subsystems of a composite
system. This allows us to derive the limits imposed on the
localization by coupling with the other subsystem. We then
perform numerical calculations for two model systems
illustrated in Fig. 1: a two-particle system bound by a
harmonic force in a one-dimensional (1D) disordered

FIG. 1. Models used for numerical calculations. Left: harmoni-
cally interacting particles in a 1D disordered lattice. Right: rigid
rotor of two particles separated by two lattice constants in a
2D disordered lattice.
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lattice and a rigid rotor of two particles in a two-
dimensional (2D) disordered lattice.
The problem considered here is different from both the

conventional Anderson model and from many-body locali-
zation (MBL) [2,3]. As in the conventional Anderson
model, we consider a single noninteracting particle in a
disordered lattice. The dynamics of the composite particle
is, however, affected by couplings to internal states that
provide which-way information, that may suppress quan-
tum interferences thus affecting localization in the spatial
dimension. In this sense, the present problem is related to
Anderson localization in a quantum system coupled to an
environment. However, in contrast to problems with baths,
the dimension of the internal state space is small and the
two coupled subsystems are mutually determined by the
dynamics of the composite particle as a whole. If viewed as
a wave packet in the combined space of spatial and internal
degrees of freedom, the present problem represents quan-
tum dynamics on a Cartesian product of a lattice graph and
a complete graph associated with spatial and internal
degrees of freedom, respectively. This could be contrasted
to MBL, whose Fock-space graphs are high dimensional
and maximally correlated [53].
We represent a pure state of a composite system by a

wave function ΨSEðR;nÞ ∈ HSðRÞ ⊗ HEðnÞ with the
Hilbert spaces HS and HE of dimensionality dS ¼
dimðHSÞ and dE ¼ dimðHEÞ, respectively. For a composite
quantum particle considered in this article, the subsystems
S and E describe the translational position by R and the
internal degrees of freedom by n, respectively. The reduced
density matrix of S in coordinate space R after tracing out
E is written as

ρSðR;R0Þ ¼
XZ

n

ρSEðR;R0;n;nÞ; ð1Þ

where the sum
P

is used for discrete states and the
integral—for continuum. Localization of the subsystem
S in coordinate space R is quantified by the inverse
participation ratio (IPR) defined as

ξ ¼
X

R

jρSðR;RÞj2; ð2Þ

where limdS→∞ξ → 1=dS for extended states, while ξ is
constant≫ 1=dS for localized states. When only one lattice
site is occupied, we have ξ ¼ 1.
The mixing of S and E is quantified by purity defined as

γ ¼ trρ2S. It can be seen that the purity γ is related to ξ by the
following expression:

γ ¼ trρ2S ¼ ξþ
X

R≠R0
jρSðR;R0Þj2 ≥ ξ: ð3Þ

The value of γ thus puts an upper limit on ξ, which can be
used to elucidate the effect of mixing between S and E on

localization in S. Since 1=d≤ γ≤1, where d¼minðdS;dEÞ,
we have ξ ≤ 1 for a pure state, while ξ ≤ 1=d for a
completely mixed state. When S is strongly entangled with
a large number of degrees of freedom, with dE ≥ dS, we
have fully extended states with ξ ¼ 1=dS.
This limit is particularly relevant for a quantum particle S

coupled to a bath E with a large number of degrees of
freedom. In this case, dE ≥ dS and the decoherence [54,55]
induces extended states when S is maximally entangled
with the bath. This result is consistent with the interpre-
tation of AL as a consequence of interference between
multiple scattering paths [56]. If the scattering particle is
coupled to a bath causing decoherence, this interference
is destroyed and the scattering particle must effectively
diffuse as a classical particle. Equation (3) quantifies this
argument by showing that localization would be destroyed
when the number of accessible degrees of freedom in the
bath is larger than dS.
More generally, Eq. (3) shows that the localization in S

can be weakened even when the environment space has a
lower dimension than that of S. We define the ratio
Δ ¼ ξ=γ to characterize quantum states. The value
Δ ∼ 1=dS is characteristic of states delocalized already in
the absence of E, while states with up to Δ ∼ d=dS can
exhibit delocalization induced by the entanglement,
i.e., there can exist both localized states with γ ∼ 1 and
delocalized states with γ < 1 in this regime. On the other
hand, states with d=dS ≪ Δ ≤ 1 exhibit localization even
with the coupling to E, while their IPR can be reduced
due to the upper limit given by γ. In what follows, we
numerically demonstrate that coupling of the translational
motion with internal degrees of freedom of composite
particles can weaken their localization and can induce the
delocalization of the type Δ ∼ d=dS for a rigid rotor in a 2D
disordered lattice.
We now present numerical calculations. First, we study a

quasi-one-dimensional Anderson model for two particles
on a disordered lattice bound by a harmonic force
(cf. Fig. 1, left). In this case, n ¼ n represents the vibra-
tional states in the two-particle dynamics. Following
[47,49], the relevant Hamiltonian is

H ¼ J
X

R

ðĉ†Rþ1;nĉR;n þ ĉ†R−1;nĉR;nÞ

þ
X

R;n

ð−2J þ EnÞĉ†R;nĉR;n þ
X

m;n;R

VnmðRÞĉ†R;nĉR;m;

ð4Þ

where ĉ†R;n is the creation operator of a two-particle system
(i.e., composite particle) with the lattice-site position R and
the internal vibrational state n, J is the hopping amplitude,
and En ¼ 2ωðnþ 1=2Þ is the energy of the internal states
with the frequency ω. VnmðRÞ is the effective potential
determined by the external random potential and the
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wave function of the internal states, VnmðRÞ ¼P
l∈Z λl½ϕnð2l − RÞϕmð2l − RÞ þ ϕnðR − 2lÞϕmðR − 2lÞ�,

where ϕnðrÞ ¼ ½ðω=πÞ1=4= ffiffiffiffiffiffiffiffiffi
2nn!

p �Hnð
ffiffiffiffi
ω

p
rÞ expð−ωr2=2Þ,

and λl are random variables from a uniform distribution
over ½−λ; λ�. We see that VnmðRÞ ¼ 0 unless n, m are
both even or both odd. Thus, interactions with disorder
lead to transitions between the internal states of the
same parity. The Hamiltonian is derived in the low energy
regime (see Supplemental Material [57] for the derivation).
In the following, we present numerical results for a
composite particle with hERi < 1.5jJj and low energy
internal oscillator states.
Figures 2(a) and 2(b) show ξ and γ of eigenstates of (4)

and Fig. 2(c)—IPR averaged within energy bins for
multiple disorder realizations with (a) λ ¼ jJj and (b),(c)
λ ¼ 5jJj. We set NR ¼ 200 sites, ω ¼ 0.1jJj and allow five
vibrational states with even n ¼ 0, 2, 4, 6, 8. This gives the
minimum purity 1=5. The expectation value of the trans-
lational energy is given by hERi ¼ hHRi whereHR is given
by the first three terms of Eq. (4). For a single structureless
particle, the eigenenergy of the Anderson model is directly
related to its group velocity which affects its localization
properties. However, the eigenenergy of (4) additionally
contains contributions from the internal states of the
composite particle. For this reason, we use hERi which
can be related to the group velocity of the translational
motion of the composite particle, so that the results can be
directly compared to those of the structureless particle with
a similar group velocity.
In Figs. 2(a) and 2(b), as the disorder strength λ increases,

the distribution approaches—but never exceeds—the upper
bound ξ ¼ γ represented by the solid red line. This shows
that, for the composite particle with γ < 1, there exists a
limitation on the localization strength even when the disorder
is very strong, i.e., λ ≫ jJj. This can be further confirmed
by comparing the maximum IPR for a structureless particle
and that for the composite particle with γ < 1 in a strong
disorder. Figure 2(c) shows that the averaged IPR for a
composite particle is lower than that for a structureless
particle. The horizontal solid lines represent (a),(b) the
maximum and minimum of the IPR of all eigenstates and
(c) the averaged IPR, from the entire spectrum of a
structureless particle in a 1D lattice with the same disorder.

The eigenstates for a composite particle with small γ have
suppressed localization compared to a structureless particle.
However, some eigenstates with γ ∼ 1 can exhibit stronger
localization than those of a structureless particle. This
happens because, when two parts of a composite particle
are in proximity, the effective random potential can become
larger than that for a structureless particle.
Equation (4) effectively describes a (1þ ϵ)-dimensional

system with ϵ accounting for internal states. The coupling
to internal states is controlled by the value of ω. Generally,
as ω increases, transitions between different internal states
become less likely to occur, and the problem reduces to a
1D problem for each internal state. This can be seen in the
increase of the purity of the eigenstates as an indication
of the separability of the Hamiltonian in translational
and internal degrees of freedom. Figure 3 shows the scaling
of ξ and ξ̃ of the most extended state with lattice size
for different values of ω. Here, ξ̃ is the IPR computed
without tracing out the internal degrees of freedom, i.e.,
ξ̃¼P

R;n jρSEðR;R;n;nÞj2. We observe that ξ̃ approaches
ξ as ω and purity increase, indicating that the Hamiltonian
becomes almost separable in translational and internal
spaces, and the (1þ ϵ)-dimensional problem is nearly
reduced to a 1D problem. For low ω (and small purity),
the IPR of the oscillator is fairly small compared to that of a
structureless particle. However, the extended states are not
observed for the 1D oscillator.
Second, we consider a quasi-two-dimensional Anderson

model which describes dimers undergoing rigid rotor
dynamics on a two-dimensional lattice, as shown in
Fig. 1. The relevant Hamiltonian is

H ¼ J
X

x;y;n

ðĉ†xþ1;y;nĉx;y;n þ ĉ†x;yþ1;nĉx;y;n þ H:c:Þ

þ
X

x;y;n

ð−4J þ EnÞĉ†x;y;nĉx;y;n

þ
X

m;n;x;y

Vnmðx; yÞĉ†x;y;nĉx;y;m; ð5Þ

where ĉ†x;y;n is the creation operator of the rigid rotor
with the translational position R ¼ ðx; yÞ and the internal
rotational state n, J is the lattice hopping amplitude, and

FIG. 2. (a),(b) ξ and γ of eigenstates of (4); (c) IPR averaged within energy bins for a composite particle (red line, circles) and for a
structureless particle (blue line, squares). The calculation parameters are ω ¼ 0.1jJj, 5 internal states (n ¼ 0, 2, 4, 6, 8), λ ¼ jJj for (a),
and λ ¼ 5jJj for (b),(c). The horizontal solid black lines show (a),(b) the minimum and maximum values of ξ and (c) the averaged ξ for a
structureless particle from the entire spectrum. All plots are produced with NR ¼ 200 sites and 20 disorder realizations.
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En ¼ n2=r2 is the energy of the internal states with a fixed
distance r between two particles of the rotor. VnmðRÞ is the
effective potential determined by the disorder potential and
the wave function of the internal states, Vnmðx; yÞ ¼P

l;l0∈Z λl;l0 ½ϕ�
nðθxyÞϕmðθxyÞ þ ϕ�

nðθ0xyÞϕmðθ0xyÞ�, with θxy ¼
arctan ð2l0 − y=2l − xÞ, θ0xy ¼ arctan ð2l0 − y=2l − xÞ − π,
and j2l0 − yj ≤ r, j2l − xj ≤ r. The quantum states of the
rotor are given by ϕnðθÞ ¼ einθ=

ffiffiffiffiffiffi
2π

p
, while λl;l0 are random

variables with a uniform distribution from −λ to λ.
Vnmðx; yÞ ¼ 0 unless ðn;mÞ are both even or both odd.
We show the numerical results for a composite particle
with hERi < 3jJj and low energy rotational states, where
the present Hamiltonian is valid (see Supplemental
Material [57] for the derivation details).
As in the previous example, Fig. 4(a) shows that the

scaling is markedly different for structureless particles and
the 2D rotor when γ is small. It is demonstrated that, for the
2D rotor, a coupling to just three rotational states accel-
erates the scaling of ξ to a great extent, indicating
delocalized states of the type Δ ∼ d=dS. Figure 4(b) shows
ξ of eigenstates of (5) as a function of hERi and disorder
strength λ. It can be seen that the states tend to become
delocalized as λ decreases and hERi increases. Note that the
increase of ξ for large λ slows down as the distribution
of the eigenstates approaches the upper bound ξ ¼ γ.
However, purity is also important in the localization
properties of a composite particle, as seen in Fig. 4(c),
illustrating that even with similar hERi, the eigenstates with
smaller γ tend to be more delocalized. This demonstrates
that the rotor in a 2D disordered lattice exhibits rich
complex behavior compared to that of a structureless
particle in a 3D disordered lattice whose localization
properties are mainly determined by its energy, which
leads to the simple separation of localized and extended
states by the mobility edge.
In summary, we have shown that the coupling between

the translational and internal degrees of freedom weakens
the localization of composite particles in disordered latti-
ces. The internal degrees of freedom can be viewed as a
small quantum system coupled to the translational degrees
of freedom, which suppresses localization as an interfer-
ence phenomenon. We have shown that the upper bound of
ξ given by γ imposes the limitation on the localization
strength even at strong disorder. The internal degrees of
freedom can reduce localization or induce extended states.
In both cases, the effect of the internal degrees of freedom
becomes remarkable when purity is small. This happens

FIG. 4. (a) log10 ξ of the most extended eigenstate of (5) with hERi < 3jJj, λ ¼ 4jJj, 1=r2 ¼ 0.1jJj (average purity γ̄ ¼ 0.36) for
triangles (red), 1=r2 ¼ 0.25jJj (γ̄ ¼ 0.42) for circles (blue), and 1=r2 ¼ jJj (γ̄ ¼ 0.94) for diamonds (dashed, green), as functions of the
logarithm of the number of lattice sites NR ∈ ½202; 602�. The dotted black line represents the IPR scaling of the most extended state from
the entire spectrum of a structureless particle in the same 2D disordered lattice. (b) ξ of eigenstates of (5) as a function of hERi and
disorder strength λ. (c) ξ, γ, and hERi of the eigenstates when λ ¼ jJj. All plots are obtained by averaging over 20 disorder realizations,
and for three internal states (n ¼ 0, 2, 4). NR ¼ 302 for (b) and (c).

FIG. 3. log10 ξ (upper panel) and log10 ξ̃ (lower panel) of the
most extended eigenstate of (4) with hERi < 1.5jJj, λ ¼ 3jJj, 5
internal states (n ¼ 0, 2, 4, 6, 8), ω ¼ 0.1jJj (average purity
γ̄ ¼ 0.24) for triangles (red), ω ¼ 0.6jJj (γ̄ ¼ 0.48) for circles
(blue), and ω ¼ 1.2jJj (γ̄ ¼ 0.84) for diamonds (dashed, green),
as functions of log10 NR, where the number of lattice sites NR ∈
½50; 450� (upper panel) and log10 N where N ∈ ½50 × 5; 450 × 5�
(lower panel). The results are averaged over 20 disorder real-
izations. The dotted black line in the upper panel represents the
IPR scaling of the most extended state from the entire spectrum of
a structureless particle in the same 1D disordered lattice.
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when the translational energy is comparable to the
characteristic energy of internal states so that effective
energy transfer between two subspaces is significant and
the Hamiltonian becomes inseparable in the 2 degrees of
freedom. To support our conclusions, we have presented
numerical results for quantum particles with vibrational
motion in 1D disordered lattices and rigid rotor dynamics
in 2D disordered lattices. Our results illustrate that
coupling to just three rotational states of a rigid rotor
on a 2D lattice changes dramatically the lattice-size
scaling properties of translational states, inducing the
formation of extended states.
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