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We show that the resource theory of contextuality does not admit catalysts, i.e., there are no correlations
that can enable an otherwise impossible resource conversion and still be recovered afterward. As a
corollary, we observe that the same holds for nonlocality. As entanglement allows for catalysts, this adds a
further example to the list of “anomalies of entanglement,” showing that nonlocality and entanglement
behave differently as resources. We also show that catalysis remains impossible even if, instead of classical
randomness, we allow some more powerful behaviors to be used freely in the free transformations of the
resource theory.
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Introduction.—Contextuality [1,2] and nonlocality [3,4]
play a prominent role in a wide variety of applications of
quantum mechanics, with nonlocality being used, for exam-
ple, in quantum key distribution [5], certified randomness
[6], and randomness expansion [7]. Similarly, contextuality
powers quantumcomputation in some computationalmodels
[8–13] and even increases expressive power in quantum
machine learning [14]. Consequently, it is vital to understand
how nonlocality and contextuality behave as resources.
In this Letter, we show that neither contextuality nor

nonlocality admits catalysts, that is, there are no correla-
tions that can be used to enable an otherwise impossible
conversion between correlations and still be recovered
afterward. Slightly more precisely, let us write d; e; f…
for various correlations (whether classical or not), d ⊗ e for
having independent instances of d and e, and d ⇝ e (read
as “d simulates e”) for the existence of a conversion d → e.
Then our results state that, in suitably formalized resource
theories of contextuality and nonlocality, whenever
d ⊗ e ⇝ d ⊗ f, then e ⇝ f already. This gives a strong
indication that contextuality (and nonlocality) are resources
that get spentwhen you use them: there is no way of using a
correlation d to achieve a task you could not do otherwise
while keeping d intact. As entanglement theory famously
allows for catalysts [15], this can be seen as yet another
“anomaly of nonlocality” [16] and thus further testament to
the fact that nonlocality and entanglement are different
resources.
We prove our results by working in precisely defined

resource theories of contextuality and nonlocality. These
are not strictly speaking quantum resource theories [17]
but resource theories in a more general sense [18,19], as
we allow resources such as Popescu-Rohrlich boxes (PR
boxes) [20] that are not quantum realizable. The kinds of
conversions between correlations we have in mind capture
the intuitive idea of using one system to simulate another
one and have been studied in earlier literature [21–29].

These roughly correspond to the local operations and
shared randomness paradigm (LOSR) or to wirings and
prior-to-input classical communication, depending on the
precise definitions of these terms. However, existing
formalizations of these in the literature are often limited
to the bipartite or tripartite settings and at times overlook
some technical issues resulting in nonconvex sets of
transformations [ [30], Appendix].
More importantly, existing formalizations of the resource

theory of nonlocality tend to focus on the case where each
party has a discrete set of measurements of which they can
perform at most one. However, this is false even in
relatively simple situations: for instance, if Alice shares
one PR box with Bob and one with Charlie, then she has
four measurements available but is not restricted to only
one measurement as she can choose a measurement for
each of her boxes. In particular, she might first measure one
of the boxes and use the outcome (and possible auxiliary
randomness) to choose what to measure next.
To overcome such issues, we work in the general

approach to contextuality initiated in [31] and later
extended in [32] to capture building some correlations
from others using such probabilistic and adaptive means,
resulting in a resource theory for contextuality. We then
obtain the resource theory of nonlocality from this via a
general mathematical construction used in [33] that builds a
resource theory of n-partite resources from a given resource
theory. Working with such generality clarifies the relation-
ship between resource theories of contextuality and non-
locality and captures the kinds of interconversions studied
in earlier literature in the exact, single-shot regime [34] in a
precise yet tractable manner.
We believe that our result could be phrased and proved in

terms of other approaches to contextuality [36–40] as long as
one formalizes such adaptive measurement protocols and
transformations between correlations within them.However,
the current proof strategy no longer applies if oneworks with
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axiomatically defined transformations as in [41], i.e., with
abstract functions between sets of correlations satisfying
properties such as preservation of locality and of convex
combinations. This is because such abstract functions might
not arise from operationally defined protocols that one might
implement physically. Indeed, operational transformations
form a proper subset of axiomatically defined ones for the
resource theories of entanglement [42] and magic [43]. For
contextuality and nonlocality, it is not known if the axiomatic
and operational resource theories agree, although a charac-
terization of those functions arising from (nonadaptive)
operational transformations is given in [ [44] Theorem 44].
One possible explanation for anomalies of nonlocality,

put forward in [45], is that they stem from using LOSR
transformations with nonlocality and local operations and
classical communication (LOCC) with entanglement.
Indeed, [45] shows that many of the anomalies disappear
when working with LOSR entanglement. In particular, they
show, for bipartite pure states, that there are no catalysts for
LOSR entanglement. We conjecture that there are no
catalysts in general for LOSR entanglement, in which case
this anomaly is fully explained by entanglement and
nonlocality being measured with LOCC and LOSR trans-
formations, respectively. For a contrasting viewpoint, see
[46], which argues that both entanglement and nonlocality
should be measured in terms of LOCC transformations.
No catalysis for contextuality.—We begin by briefly

reviewing the resource theory of contextuality as defined
in [32]. To start, we formalize the idea of a “measurement
scenario” S: we imagine a situation where there is a finite set
XS of measurements available, each measurement x ∈ XS
giving rise to outcomes in some finite setOS;x.However, only
some measurements might feasible to perform together—
other combinations may be ruled out by practical limitations
or excluded by physical theory. We collect all jointly
compatible measurements into a single set ΣS, which we
expect to satisfy two natural properties: (1) anymeasurement
x ∈ XS induces a compatible set fxg ∈ ΣS, and (2) any
subset of a compatible set of measurements is compatible.
Collecting all this data together results in the measurement
scenario S ¼ hXS;ΣS; OSi.
Given two scenarios S and T, we let S ⊗ T denote the

scenario that represents having access to S and T in parallel,
so that a joint measurement is possible precisely if its
components in S and T are possible.
An empirical model over a scenario S is given by

specifying for each compatible σ ∈ ΣS a joint probability
distribution eσ for measurements in σ. We only consider
empirical models for which the behavior of a joint meas-
urement does not depend on what is measured with it, if
anything. Thus, whenever τ ⊂ σ ∈ ΣS, the distribution eτ
over τ can be obtained by marginalizing eσ to τ. We express
this generalization of the usual no-signaling conditions as
eσjτ ¼ eτ, so that more generally for a joint distribution d
over outcomes of Y ⊂ XS and Z ⊂ Y, the expression djZ
denotes the marginal distribution on outcomes of Z.

If the impossibility of measuring everything together is
only a practical limitation, one can contemplate the dis-
tribution d that would arise when measuring XS. If d
explained the model e we have at hand, we would expect it
to satisfy djσ ¼ eσ for every σ ∈ ΣS. If such a distribution
exists, we call e “noncontextual.” If no such distribution
exists, we call e “contextual,” as we have reason to believe
that it is infeasible in principle to measure everything
together unless one accepts that the observed joint distri-
bution for a subset Y ⊂ X depends on what it is measured
with, i.e., its context.
A simple example of scenario and a contextual empirical

model on it, discussed in [47], is given by three measure-
ments, any two of which are compatible but not all three
together. Each measurement takes outcomes in f0; 1g, and
whenever two measurements are performed one observes
(0,1) and (1,0) with equal probability, with the probability
distributions for singletons fixed by this and resulting in
observing the two outcomes with equal probability. To see
that this is contextual, note that there is no joint outcome for
all three measurements that is consistent with the observed
marginals.
More examples can be obtained from scenarios studied

in nonlocality, where one typically specifies a scenario by
giving the number of parties, the number of measurements
available to each of them, and the size of the outcome sets,
where it is then understood that maximal compatible
measurements are given by a choice of a single measure-
ment by each party. This includes for instance the famous
Clauser, Home, Shimony, and Holt model [48] and the
PR box [20] which goes beyond what is allowed in
quantum mechanics, both models arising in the scenario
with two parties having access to two dichotomic
measurements.
We now move on to transformations between scenarios

and empirical models. We will build up to “wirings” that in
full generality capture the idea of “simulating” an empirical
model from another adaptively with the help of non-
contextual randomness. These will be the free transforma-
tions of our resource theory, but we begin by considering
the problem of building one scenario from another. A
particularly simple way of building T from S is by declaring
that for each measurement x ∈ XT of T some measurement
πðxÞ ∈ XS of S is to be performed instead. Moreover, each
outcome o of πðxÞ is to be interpreted as the outcome αxðoÞ
instead. If for each compatible σ ∈ ΣS the corresponding
measurement πðσÞ is jointly compatible in S, the pair
hπ; α ¼ ðαxÞx∈Xi describes a way of building T from S, and
we will denote this by writing hπ; αi∶S → T.
Given such hπ; αi∶S → T, any empirical model e∶S

induces a model on T that describes the statistics one would
see if one was to observe the statistics given by e and then
transform them according to hπ; αi. We then denote by
hπ; αi� the function that pushes empirical models on S
forward to empirical models on T, so that for e∶S the
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induced model on T is denoted by hπ; αi�ðeÞ. The pair
hπ; αi is defined to be a “deterministic simulation” of e∶T
from d∶S, denoted by hπ;αi∶d → e, precisely when hπ; αi
transforms d to e, i.e., if hπ; αi�ðdÞ ¼ e. Such a simulation
is depicted in Fig. 1.
There are two ways in which these deterministic simu-

lations are weaker than one would want in a general
resource theory of contextuality: first, one might want to
allow the usage of auxiliary (noncontextual) randomness so
that the dependence of measurements and their outcomes of
T on those of S is stochastic. The usage of auxiliary
randomness is captured in [49] and discussed further in [50]
and, in our terms, could be defined by allowing probabi-
listic mixtures of transformations. However, this viewpoint
leaves out another important generalization: namely the
possibility that a single measurement in T can depend on a
joint measurement of S as in [51] or more generally on a
measurement protocol on S that chooses which joint
measurement to perform adaptively. The most general
formulation of this idea would allow a measurement x in
T to be simulated by a probabilistic and adaptive procedure
that first measures (depending on some classical random-
ness) something in S and then, based on the outcome (and
possibly further classical randomness), chooses what to
measure next (if anything) and so on. This idea is
formalized carefully in [32] in two stages, the first one
adding adaptivity and the second adding randomness.
To model adaptivity, one builds from a scenario S a new

scenario MPðSÞ of (deterministic) “measurement proto-
cols” over S. A measurement protocol is a procedure that, at
any stage, either stops and reports all of the measurement
results obtained so far, or, based on previously seen
outcomes, performs a measurement in S that is compatible
with the previous measurements. The measurements of
MPðSÞ are given by such protocols over S, and a set of
measurement protocols is compatible if they can be
performed jointly without having to query measurements
outside of ΣS. Then one can define adaptive (but still
deterministic) transformations S → T between scenarios as
deterministic transformations MPðSÞ → T as in Fig. 2. In
[32], we show that the assignment S ↦ MPðSÞ defines a
comonad on the category of scenarios: this abstract
language is not needed here but can be thought of as
guaranteeing that one has a well-behaved way of compos-
ing MPðSÞ → T with MPðTÞ → U to obtain a map
MPðSÞ → U. Intuitively, the composite is obtained by first
interpreting each measurement in U as a measurement
protocol over T, and each measurement in that measure-
ment protocol as an measurement protocol over S, and then
“flattening” the resulting measurement protocol of meas-
urement protocols {i.e., a measurement of MP½MP½ðSÞ�}
into a measurement protocol over S.
To model (noncontextual) randomness, one then defines

a simulation d → e to be a deterministic simulation
MPðd ⊗ cÞ → e for some noncontextual model c as in

Fig. 3. Again, such simulations compose in a well-behaved
manner, i.e. they form a category [52].
We will denote the existence of such a simulation d → e

by d ⇝ e, read as “d simulates e.” Simulations thus defined
interact well with contextuality. For instance, [ [32] Theorem
21] states that the noncontextual fraction, studied in [13], is a
monotone, that is, if d ⇝ e, then NCFðdÞ ≤ NCFðeÞ; and
[ [51] Theorem 4.1] implies that an empirical model is
noncontextual if and only if it can be simulated from the
trivial model on the empty scenario. In fact, the notions of
logical and strong contextuality can be captured along similar
lines [44] by relaxing the equality of probability distributions
in the definition of simulation by equality (or inclusion) of
supports of these distributions.
We now state our main result for this resource theory of

contextuality.
Theorem 1. If d ⊗ e ⇝ d ⊗ f in the resource theory of

contextuality, then e ⇝ f.
The key ideas of the proof are simple, even if the full

details get technical: if d can catalyze a transformation
e → f once, it can do so arbitrarily many times. Choosing a
big enough number of copies of e to transform to copies of
f, using the pigeonhole principle, we can show that one
only needs a compatible subset of Sd (or rather, a
compatible set of measurement protocols). Making this
precise requires formalizing our framework more carefully,
and we do this in the Supplemental Material [53]. Our
result subsumes [ [32], Theorem 22], as setting d ¼ f and
letting e be the trivial model on the empty scenario implies
that if d ⇝ d ⊗ d, the model d must be noncontextual.

FIG. 1. Depiction of a deterministic simulation d → e, with π
transforming inputs of T to those of S and α transforming outputs
of S to outputs of T.

FIG. 2. Depiction of an adaptive simulation d → e.
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No catalysis for nonlocality.—We know explain how to
interpret nonlocality within this framework. At the level of
scenarios and models on them, nonlocality can be seen as a
special case of contextuality: for nonlocality, the measure-
ment scenario typically arises by considering n parties, with
the ith party choosing one measurement from a set Xi of
measurements available to them, with a measurement x ∈
Xi giving outcomes in some outcome set Oi;x. Often one
restricts the situation even further and assumes that each
party has the same number of measurements available and
each measurement takes outcomes in a set of the same size,
so that the scenario is specified (up to isomorphism) by
three numbers: the number of parties, the number of
measurements available to each of them, and the size of
the outcome sets. Whether or not one imposes this further
restriction, such scenarios are of the form S ¼⊗n

i¼1 Si,
where each Si is just a discrete set of measurements (so
only singleton measurements are possible in each Si). In
particular, a maximal measurement corresponds to a choice
ðx1;…xnÞ of a measurement at each site, and a set of
correlations can be given as a family pðo1;…onjx1;…xnÞ
of conditional probabilities for each such measurement. If
the family p is (fully) no-signaling, it corresponds to a
unique empirical model e∶S (where the probabilities over
nonmaximal measurements are obtained by marginaliza-
tion), and p is local if and only if e is noncontextual.
However, if we allow parties to share different nonlocal

resources, we move away from the situation where each
party chooses one measurement from a set of mutually
exclusive measurements. For instance, if Bob shares one
box with Alice and one with Charlie, Bob is not limited to a
single measurement: he can choose one for each box. As
quantum theory allows for arbitrary joint measurability
graphs in the case of projection-valued measurements [54]
and arbitrary simplicial complexes in the case of positive-
operator valued measurements [55], we impose no restric-
tions on the measurement scenarios available at each site.
However, if we are thinking about a n-partite scenario, it is
reasonable to expect that measurement choices done at one
site do not affect the measurements available at another

one. Thus, we model an n-partite scenario as a tuple ðSiÞni¼1

of scenarios, thought of as representing the n parties
sharing the scenario ⊗n

i¼1 Si.
At the level of transformations between models and

scenarios, nonlocality is no longer a special case of con-
textuality, as observed for example in [30] [Appendix A.1].
This is because our wirings are slightly too general as they
allow the ith party to wire some of their measurements to
measurements belonging to other parties, whereas opera-
tionally speaking it is reasonable to require each party to
have access only to measurements available to them (and
shared randomness). Nevertheless, the resource theories are
very closely related, as one can obtain the resource theory
for n-partite nonlocality from that of contextuality via a
general construction, used in the context of cryptography in
[33], that builds a resource theory of n-partite resources
from a given resource theory.
In our setting, this amounts to defining the resource

theory of n-partite nonlocality as follows: an n-partite
scenario is an n-tuple ðSiÞni¼1 of scenarios (some of which
may be empty), and an n-partite empirical model e∶ðSiÞni¼1

is an empirical model on⊗n
i¼1 Si. The parallel composite⊠

of scenarios is defined pointwise, i.e., by setting
ðSiÞni¼1⊠ðTiÞni¼1 ¼ ðSi ⊗ TiÞni¼1. To define ⊠ for two n-
partite models e∶ðSiÞni¼1 and d∶ðTiÞni¼1, note that the
scenarios ð⊗n

i¼1 SiÞ ⊗ ð⊗n
i¼1 TiÞ and ⊗n

i¼1 ðSi ⊗ TiÞ are
canonically isomorphic so that the model e ⊗ d∶ð⊗n

i¼1

SiÞ ⊗ ð⊗n
i¼1 TiÞ induces a model e⊠d on ⊗n

i¼1 ðSi ⊗ TiÞ
via this isomorphism. Finally, an n-partite simulation d →
e is defined as an n tuple of simulations ½MPðTi ⊗ Pi →
SiÞ� that, when taken together, transform d⊠c to e where c
is some noncontextual shared correlation. In this manner,
the resource theory of n-partite nonlocality is derived from
that of contextuality by keeping track of the n-partite nature
of scenarios and transformations between them.
Our proof of Theorem 1 readily implies that nonlocality

admits no catalysts.
Theorem 2. If d⊠e ⇝ d⊠f in the resource theory of

n-partite nonlocality, then e ⇝ f.
Quantum-assisted transformations and beyond.—We

briefly discuss a further generalization of our main result.
One could consider resource theories with even more
expressive simulations than the ones defined above. In
the above, we define simulations as deterministic simu-
lations assisted by noncontextual randomness. As sug-
gested in [32], one could allow more general correlations to
be used in transformations and study, e.g., quantum-
assisted simulations. More specifically, one could define
quantum-assisted simulations e → f as deterministic sim-
ulations MPðe ⊗ qÞ → f, where q is a quantum-realizable
empirical model. More generally, for any class X of
empirical models that is closed under ⊗, one gets a
well-defined notion of X -assisted simulations, and we will
write d ⇝X e to denote the existence of an X -assisted
simulation from d to e. If the class X contains all nonlocal

FIG. 3. General simulation d → e, where we require c to be
noncontextual.
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correlations, the resulting resource theory has no catalysts.
A similar result holds for X-assisted n-partite transforma-
tions between n-partite correlations, but we restrict our-
selves to stating the theorem for contextuality.
Theorem 3. Let X be a class of empirical models that is

closed under⊗ and contains all classical correlations. Then
d ⊗ e ⇝X d ⊗ f implies e ⇝X f.
For instance, if we take X to be the class of quantum-

realizable empirical models, this result implies that, if by
some miracle we got access to a single PR box, we could
not use it to catalyze a quantum-assisted transformation that
was hitherto impossible. Put another way, no matter what
class of correlations we can use freely, the only way to get
mileage out of a box that goes beyond our powers is to
spend it—so we must choose wisely.
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