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We report experimental and computational observations of dynamic contact networks for colloidal
suspensions undergoing shear thickening. The dense suspensions are comprised of sterically stabilized poly
(methyl methacrylate) colloids that are spherically symmetric and have varied surface roughness. Confocal
rheometry and dissipative particle dynamics simulations show that the shear thickening strength β scales
exponentially with the scaled deficit contact number and the scaled jamming distance. Rough colloids, which
experience additional rotational constraints, require an average of 1.5–2 fewer particle contacts as compared
to smooth colloids, in order to generate the same β. This is because the surface roughness enhances geometric
friction in such a way that the rough colloids do not experience a large change in the free volume near the
jamming point. The available free volume for colloids of different roughness is related to the deficiency from
the maximum number of nearest neighbors at jamming under shear. Our results further suggest that the force
per contact is different for particles with different morphologies.

DOI: 10.1103/PhysRevLett.127.158002

Dense suspensions of colloidal particles with stochastic
Brownian motion exhibit shear thickening under flow, a
non-Newtonian behavior where the suspension viscosity η
increases mildly or strongly depending on the applied shear
stress σ and particle volume fraction ϕ. The ability to
design the onset of shear thickening σ� provides a unique
advantage in the reversible tuning of material mechanics,
which is of great interest in fields such as soft robotics,
impact resistant fabrics, and liquid manufacturing [1–3].
However, the tunability in these systems currently re-
mains at a rudimentary level of “on” or “off.” For dense
suspensions to truly advance technology, the level of
control over the shear thickening needs to become more
deliberate and refined [4,5]. In this Letter, we show that
designing shear thickening strength is possible for a broad
class of colloidal suspensions through a singular parameter:
the distance to jamming.
A jammed material at ϕJ is conventionally defined as a

disordered particulate system that has developed a yield
stress [6]. Shear thickening shares similarities to jamming
in that the particles in a flowing suspension become
impeded by the nearest neighbors and therefore require
an increasing amount of stress to continue flowing [1,7].
The microstructural origin of shear thickening was first
attributed to the formation of hydroclusters in Stokesian
dynamics simulations [8]. Experiments later corroborated
this observation [9], suggesting that the shear thickening
onset can be discussed in the context of the dimensionless
Péclet number (Pesh ¼ 6πηa3eff _γ=kBT), that represents the
ratio of hydrodynamic to thermal forces acting on colloids,
or through a dimensionless shear stress that accounts for the
average force it takes to push particles into load-bearing

contact [38]. More recently, simulations that incorporate
explicit interparticle friction μ or particle roughness plus
lubrication hydrodynamics were able to fully capture the
large increase in viscosity that is characteristic of strong
shear thickening [10,11]. An important result from
these simulations is the appearance of space-spanning force
chains and velocity correlations in shear thickened
suspensions [12]. These force chains arise from combina-
tions of σ- and ϕ-based constraints including hydrody-
namics, repulsion, adhesion, and solid contact friction
[11,13,14]. As Pesh increases, the force chains proliferate
and grow stronger as a system undergoes stronger
shear thickening and ultimately shear jamming [15].
Interestingly, conventional microstructural characterization
techniques such as the radial distribution function [14] or
scattering patterns in the velocity-gradient-vorticity planes
[16] are not too sensitive to differences between shear
thickened states. As ϕ → ϕJ and σ increases, conservation
laws state that the contact distance between particles in a
constant-volume suspension must decrease, leading to a
greater number of nearest contacts. To address a lack of
experimental evidence of contacts chains in the literature,
we focus on the microstructural characterization of
dynamic contact networks formed by dense colloidal
suspensions in shear thickening flows. Here, contact does
not necessarily mean solid friction, but could be from
interparticle and hydrodynamic forces that constrain par-
ticles into a stress-bearing network.
We use the mean contact number <z >, a measure for the

number of contacting nearest neighbors around particles, to
quantify the suspension microstructure because of the strong
correlation of <z > with bulk mechanics [17]. The contact
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number at jamming, zJ, and ϕJ are inextricably linked to the
interparticle friction in dense packings. Application of
Maxwell’s isostatic criterion to a frictionless hard sphere
system at ϕJ ¼ 0.64 reveals that zJ ¼ 6. Incorporating μ
between colloids further reduces ϕJ and zJ [18,19]. The
rotational constraint μ is featured in several constitutive
equations, particle simulations, and phenomenological mod-
els that describe shear thickening as due to particles under-
going a stress-induced lubricated-to-frictional transition
beyond σ� [20–22]. Additionally, experimental measure-
ments demonstrate that the rotational dynamics of shape-
symmetric particles with protrusions deviate significantly
from simulations of hard sphere suspensions [23–26]. While
the interparticle friction may not always track with surface
roughness because of complex tribological factors (e.g.,
elastohydrodynamics [27,28]), in general, rougher particles
have larger values of μ.
To investigate the role of surface roughness on the

contact microstructure of shear thickening colloidal sus-
pensions, we use confocal rheometry experiments and
dissipative particle dynamics (DPD) simulations to identify
a quantitative link between the strength of thickening β ¼
logðΔηÞ= logðΔσÞ and the distance from jamming ðϕmax −
ϕÞ=ϕmax ¼ Δϕ=ϕmax for smooth and rough colloids.
Physically, the parameter β represents the ensemble average
change in viscosity and microstructure associated with an
increasing stress. Here, ϕmax refers to the maximum
jamming fraction for a disordered packing, where ϕmax ¼
ϕJðσ ¼ 0 PaÞ is obtained from confocal microscopy per-
formed on colloids that have undergone unperturbed
sedimentation under gravitational stress for three months.
We obtain β using the average slope at the inflection points
above σ� and before the high shear plateau. At ϕmax, the
suspension is considered mechanically rigid and the sus-
pension is not flowable at or beyond this ϕ. The value of
ϕmax is verified independently within an experimental
uncertainty of �5% by fitting the relative low-
shear viscosity (ηr;low-shear) divergence to the form
ηr;low shear ¼ ð1 − ϕ=ϕmaxÞ−2. The value of ϕmax is a key
parameter in normalizing the jamming distance and varies
for colloids with different surface morphologies.
We hypothesize that there is a universal correlation

between Δϕ=ϕmax, β, and <z > for all suspensions exhib-
iting shear thickening. To reveal this relationship, we
synthesize spherically symmetric and size-monodisperse
poly(methacrylate) (PMMA) microspheres with different
levels of surface roughness [29]. These particles are steri-
cally stabilized with poly(12-hydroxystearic acid) (PHSA)
brushes of lengths 10–15 nm [30]. We prepare suspen-
sions at ϕ < ϕmax by first centrifuging the stock suspen-
sion at a gravitational Péclet number, Peg ¼ 1500

(Peg ¼ 4πa4effΔρg=3kBT), and subsequently diluting the
shear jammed sediments with known volumes of an
index-matched solvent, squalene. We obtain ϕ by imaging
the fluorescent colloids with confocal laser scanning

microscopy (CLSM, Leica SP8) and processing the 3D
image volumes using a brightness-weighted centroid-based
algorithm [31]. Separately, steady shear rheological mea-
surements are performed using a stress-controlled rheometer
(TA Instruments DHR-2) fitted with a 50-mm sandblasted
cone-and-plate geometry.
Figure 1 shows different rheological behavior of

PMMA hard colloids with two types of morphology
and similar effective swollen diameters 2aeff , smooth
[S, 2a ¼ 1.65 μm� 4%, Fig. 1(a)] and rocky [RK,
2aeff ¼ 1.49 μm� 6%, Fig. 1(b)]. Two other morpholo-
gies are also studied: slightly rough (SR, 2aeff ¼
1.86 μm� 5%) and very rough (VR, 2aeff ¼ 1.47 μm�
6%) [32]. These steady shear flow curves describe the
relative suspension viscosity (ηr ¼ η=ηs, squalene viscosity
ηs ¼ 0.012 Pa · s) as a function of scaled σ. The dotted
lines represent the two stress points at which we obtain
<z > values from dynamic packings: one at σ̃ ¼ σ̃β¼0 < σ̃�

and the second at σ̃ ¼ σ̃β > σ̃�, where the overhead ∼
represents the stress values scaled by a3eff=kBT. As σ̃ > σ̃�,
there is an proliferation of interparticle contacts [21,33].

FIG. 1. Experimental rheology for suspensions of (a) smooth
and (b) rough colloids. Flow curves represent ηr plotted against σ
scaled by the effective particle radii and temperature. Numerical
values next to each curve indicate the ϕ (filled). Solid lines are fits
with the WC theory [20,34,35]. The vertical dashed lines
represent the stresses below and above the onset stress (vertical
dotted line) where we obtain the average contact numbers.
Representative scanning electron micrographs and confocal
micrographs of the colloids are shown to the right side of
respective flow curves. Scale: 5 μm.
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The suspensions transition from fully Newtonian flow at
low σ and ϕ, to continuous shear thickening (CST, β < 1) at
intermediate ϕ, and finally to discontinuous shear thickening
(DST, β ≥ 1) at high σ and as ϕ → ϕmax. Some suspensions
also exhibit a secondary plateau at the highest values of σ
[11,14,19,21,36]. The onset of DST for smooth particle
suspensions occurs at ϕ ¼ 0.57 [Fig. 1(a)], similar to the
values reported earlier in the literature for colloids interacting
with a short-range repulsive potential [34,37].
Our data show that Δϕ=ϕmax predicts β for different

types of colloidal suspensions containing spherically sym-
metric particles. Figure 2 shows that all colloidal sus-
pensions obey the general scaling of the form, β∼
expð−Δϕ=ϕmaxÞ, where DST is present at Δϕ=ϕmax ≤
0.1 and CST is found at Δϕ=ϕmax > 0.1. The value of β
rapidly decreases at increasing Δϕ=ϕmax. Additional sup-
port for this correlation comes from β and Δϕ=ϕmax values
extracted from a number of experiments and simulations in
the literature [11,19,22,33,34,36,38–41]. This scaling has
significant impact in the academic and industrial commun-
ities because it enables the a priori estimation of β (a
dynamic stress-structure parameter) using Δϕ=ϕmax (a
static configuration parameter). The remarkable match
from independent research groups suggests that there exists
a direct link between the shear thickening microstructure of
colloids and their respective jamming distance. This link is

more clearly illustrated using the dynamic <z > values
of shear thickening suspensions and their relation to
Δϕ=ϕmax.
To characterize the contact microstructure of dense

suspensions at the large applied stresses used to induce
shear thickening, we use a custom confocal rheometer
setup [Fig. 3(a)], where a stress-controlled rheometer
(Anton Paar MCR 502 WESP) is directly coupled to a
confocal laser scanning microscope (CLSM) (Leica SP8)
similar to an earlier setup in the literature [42]. Steady shear
is applied to suspensions of smooth and rough colloids
using a 20 mm parallel-plate top geometry and a glass
coverslip at the bottom (thickness ¼ 0.17 mm). The con-
focal rheometer is used to obtain 3D image volumes of
dense suspensions undergoing steady shear at σ̃β¼0ð≈102Þ
and σ̃βð≈104Þ, as described in Fig. 1. Each stack of size
50 μm× 50 μm × 10 μm is imaged in under 5 s and
contain ∼103 − 104 particles. The suspensions contain
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FIG. 2. Shear thickening strength as a function of jamming
distance. Data from this work are shown in S (magenta circles),
SR (red upper triangles), VR (coral lower triangles), and RK
(cyan squares) colloids. Solid line indicates an empirical fit of the
form: β ¼ β0 expð−Δϕ=ϕmaxκÞ with β0 ¼ 1.61� 0.05 and
κ ¼ 4.18� 0.32. Literature values from experimental colloidal
studies are indicated by green symbols: smooth PMMA (circle)
[34], rough PMMA (upper triangle) [38], smooth silica (square
[41] and hexagon [36]), and rough silica (lower triangle [39] and
diamond [40]). Literature values from simulations are indicated
by gray symbols: colloids with surface asperities interacting via
lubrication (square) [11], spheres with sliding friction (upper
triangle) [22], spheres with sliding and rolling friction (circle)
[19], and colloids interacting via sliding friction (lower triangle)
[33]. Inset shows the fitting to the form: ηr ¼ ð1 − ϕ=ϕmaxÞ−2
normalized for each particle ϕmax values. Solid line represents the
universal low-shear viscosity divergence.
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FIG. 3. (a) Confocal rheometer setup for imaging shear-
induced contact networks during the flow measurements.
(b) Schematic for interparticle contact in smooth (top row)
and rough (bottom row) colloids. The light blue circle repre-
sents associated experimental length scales. (c),(d) Contact
networks of shear thickening suspensions at Δϕ=ϕmax ¼
0.075 and β ¼ 0.85 as shown in VMD reconstructions of the
(c) experimental microstructures and (d) simulation snapshots.
For (c) and (d), the top panels are for the smooth particle
suspensions and the bottom panels are for rough colloidal
suspensions. Side insets show color panel for the respective z of
the particles shown in (c),(d). Additional right inset represents
the velocity-velocity gradient flow direction with respect to the
contact networks shown in (c),(d).
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5 wt% photocrosslinking mixture to rapidly arrest the
suspensions with ultraviolet (UV) light within 1 s [43].
To obtain the sheared microstructure, we hold the suspen-
sions at constant stresses, at values as marked in Fig. 1, for
150 s. We shine UV light (λexc ¼ 405 nm) first and
immediately drop the stress to zero (Δt ¼ 1 s), thus locking
in the suspension microstructure without any relaxation of
the sheared structures (video_S1 in the Supplemental
Material [43]). We perform three independent experiments
and obtain image stacks from three different points in each
sheared sample. All image stacks are imaged at least 15 μm
above the coverslip to avoid wall effects.
The images obtained from the confocal rheometer

experiments are supported using DPD simulations of
bidisperse suspensions (a and 1.1a in an equal volume
ratio with total number of particles N ¼ 1000) containing
smooth and rough colloids closely representing the exper-
imental system [43]. The particle roughness is modeled by
distributing asperities of length scale 0.1a on the surface of
the smooth base spheres, similar to earlier simulations
schemes [11,14,38,44–48]. To enable a proper comparison
between simulations and experiments, the ϕmax values for
the simulated suspensions are matched to the S and RK
experimental systems. The goal is to link β to <z > and to
capture the contact networks responsible for shear
thickening.
Defining interparticle contact during shear thickening

requires the use of two different contact criteria at σ̃ < σ̃�
and at σ̃ ≥ σ̃�, because the particles undergo a transition
from lubricated-to-frictional flow and the soft PHSA brush
becomes compressed by the large applied stresses [38]. At
σ̃ < σ̃�, two particles are defined to be in hydrodynamic
contact if the interparticle separation is equal or less than
the uncertainties that include the PHSA brush length, size
polydispersity, and surface roughness [29]. At σ̃ ≥ σ̃�, a
frictional contact is defined by the average center-to-center
distance between particles, 2aeff as shown in Fig. 3(b) [44].
Thin layers of fluid could still be present between these
frictional contacts. In DPD simulations, interparticle con-
tacts are defined similarly for all particles and their
interactions with other asperities and base particles.
Experimental results are in excellent agreement with the
contact microstructure obtained from DPD simulations for
smooth and rough particles: the <z > values obtained from
DPD simulations fall within the error limits of the <z >
values obtained from our experimental packings, as shown
in Fig. 4(a).
Visual molecular dynamics (VMD) renderings of the

dynamic packings, at σ̃β, from the experiments and
simulations for suspensions containing smooth and rough
particles at Δϕ=ϕmax ¼ 0.075 and β ¼ 0.85 are shown in
Figs. 3(c)–3(d). The renderings show the presence of space-
spanning contact networks and provide a statistical view
of how smooth and rough colloids pack differently in
shear thickening flows. Particles are concentrated in the

compressive flow axis, in agreement with previous neutron
scattering studies on shear thickening suspensions [16,49].
A first step towards constructing a mean-field description
parameter of the contact microstructure formed in such
networks would be possible by evaluating the relationship
between the dynamic contact number at σ̃β and β for
suspensions at various ϕ.
Figure 4(a) shows the dynamic contact number, <z >β,

as a function of Δϕ=ϕmax for sheared suspensions of
smooth and rough colloids. The dashed lines in Fig. 4(a)
indicate that the smooth colloids, on average, require 1.5–2
additional contacts to maintain the same β as compared to
the rough colloids. The value of <z >β is a function of σ̃β
because the external deformation imparts an additional
nonequilibrium free energy that must be minimized for
steady flow [50]. To normalize the spatial effect of
interparticle contacts that stem from free volume
differences, we define a parameter z� that captures the
scaled contact deficit, where z� ¼ ðzJ;β− < z >βÞ=zJ;β.
Here, zJ;β is the maximum possible contacts at ϕJ;β, which
is defined as the divergence of the viscosity at σ̃β and
indicates the maximum flowable volume fraction at σ̃β.
To estimate the shear-induced jamming point ϕJ;β, for

suspensions of smooth and rough colloids, we invoke an
argument that relates the divergence of ηr to (ϕJ − ϕ) at a
given σ, where ϕJ ¼ ϕJðσÞ. Specifically, the low-shear and
high-shear viscosities are expected to diverge at ϕmax and a
σ-dependent ϕJ, respectively, with an exponent of −2 [51].
By extension, this suggests that ηr at intermediate σ
should also diverge to a corresponding stress-dependent
quasi-jamming point, ϕJ;β ¼ ϕJ;βðσ̃βÞ with the same expo-
nent of −2. The inset in Fig. 4(b) shows the scaling of the

FIG. 4. (a) The change in <z >β of smooth (circles) and rough
(squares) colloids from experiments (filled) and simulations
(unfilled) as a function of Δϕ=ϕmax. Inset shows β as a function
of <z >β. Dashed lines in the main figure and the inset
corresponds to the suspensions at Δϕ=ϕmax ¼ 0.075 and
β ¼ 0.85. (b) The scaling z� ∼ ðΔϕ=ϕmaxÞα obtained from experi-
ments and simulations. Dashed line indicates the power law fit.
Inset shows the scaling relation between ηr and unscaled
jamming distance in accordance to ηr ∼ ðϕJ;β − ϕÞ−2. Two
additional types of rough particles: SR (upper triangles) and
VR (lower triangles) are included in (b).
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form ηr ∼ ðϕJ;β − ϕÞ−2, where ϕJ;β ¼ 0.61 and 0.51 for
smooth and rough colloids, respectively. The value of zJ;β is
then obtained by extrapolating <z >β at various ϕ to the
respective quasi-jamming points ϕJ;β, where zJ;β values are
4.95� 0.01 and 3.25� 0.01 for smooth and rough col-
loids. Figure 4(b) shows that the dynamic contact scaling
takes the form z� ∼ ðΔϕ=ϕmaxÞα with α ¼ 0.95� 0.07. A
similar scaling (α ¼ 1.08) had been observed in 2D
simulations of soft frictionless particles that are repulsive
[52]. The observed power-law correlation in Fig. 4(b) is
statistically significant with a normalized chi-squared
parameter χ̄2 ¼ 2.12 and P < 0.005 [43,53].
In Fig. 1, following the vertical dashed lines correspond-

ing to σ̃β, an increase in ϕ is associated with an increase in
β, and a decrease in bothΔϕ=ϕmax and z� is associated with
the formation of more space-spanning contacts. For a given
σ̃β, for each particle system, there exists a ϕJ;β and
corresponding zJ;β beyond which there is no steady state
flow. In a constant volume rheological experiment
restricted by the dimensions of experimental and simulation
setup, the free volume available to rearrange under shear is
greater for smooth colloids than that of the rough colloids,
because smooth colloids can rotate freely with little hydro-
dynamic resistance [23,54]. The difference in spatial
constraints imposed by the restricted rotational degree of
freedom in rough colloids is captured by the deficiency of
nearest neighbors to their respective zJ;β. The universality
in Fig. 4(b) shows that this physical mechanism for shear
thickening holds for all types of suspensions and thus the
parameter z�, which is a contact network parameter that
captures the distance to zJ;β, can be used as a representation
of the modes of particle motion under shear.
The dynamic contact scaling z� ∼ Δϕ=ϕmax [Fig. 4(b)]

and the static packing correlation β ∼ expð−Δϕ=ϕmaxÞ
(Fig. 2) can be combined to relate the sheared contact
microstructure and the shear thickening strength as
β ∼ expð−z�Þ. The results suggest that at a given β, because
<z > is different for different suspension type, the force
carried by each contact is different for particles of different
morphologies. Earlier work on compressed hydrogel beads
found that the macroscopic force, F, scales with dynamic
contacts as F∼ < z > [55]. To obtain the same change in
suspension stress (or β), rough particles suspensions
required, on average, fewer contacts compared to smooth
particle suspensions. In other words, for the same F in our
systems, F= < z > for rough particle suspensions must be
greater than that of the smooth counterpart. We indirectly
capture the force per contact through the parameter z�,
which factors in the scaled contact deficit for various types
of particle suspensions. Note that the contact networks
found in this work would likely have different morphol-
ogies and properties from the force chains observed in
previous studies [12]. The dynamic <z > values in our
studies act as scalar parameters that describe the collective

particle rearrangement and their resultant microstructures
under shear.
As a suspension shear thickens, clusters and percolated

networks of particle contacts break and reform, but our
study has shown that a mean-field description using
dynamic <z > can connect β and Δϕ=ϕmax. The dynamic
contact scaling may break down at ϕ values close to ϕmax

(Δϕ=ϕmax ≤ 10−2) due to pronounced flow instabilities
[56–58] and the increase in uncertainty in z� close to the
jamming point could be due to these instabilities.
Nonetheless, our study shows that the scaled jamming
distance is a strong predictor for the shear thickening
behavior of a broad class of colloidal suspensions.
Because force networks are likely coupled to the contact

network and particle positions [59], future studies that
analyze the transient network anisotropy could provide new
insight as to how different types of particles carry load in
flowing systems [60–62]. Athermal suspensions [63,64]
and shape-anisotropic colloids [65] have not been tested in
this study, and it would be interesting to see if the proposed
scaling laws hold for these materials.
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