
Defect Production in Compressed Filament Bundles

Valentin M. Slepukhin1 and Alex J. Levine 1,2

1Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1596, USA
2Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1596, USA

(Received 20 April 2021; revised 28 July 2021; accepted 10 September 2021; published 7 October 2021)

We discuss the response of biopolymer filament bundles bound by transient cross-linkers to compressive
loading. These systems admit a mechanical instability at stresses typically below that of traditional Euler
buckling. In this instability, there is thermally activated pair production of topological defects that generate
localized regions of bending—kinks. These kinks shorten the bundle’s effective length, thereby reducing
the elastic energy of the mechanically loaded structure. This effect is the thermal analog of the Schwinger
effect, in which a sufficiently large electric field causes electron-positron pair production. We discuss this
analogy and describe the implications of this analysis for the mechanics of biopolymer filament bundles of
various types under compression.
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Long, stiff filaments held together by strong bonds are
ubiquitous in biology. These filaments appear in both the
cytoskeleton and the extracellular matrix in the form of
bundles bound by a variety of cross-linking molecules,
which, due to their weaker interactions with the filaments,
attach and detach from the bundle reaching a chemical
equilibrium with their concentration in the surrounding
fluid. The mechanical response of filaments and their
networks is well understood. The filaments are nearly
inextensible; they respond to tensile or compressive loading
by reducing or increasing (respectively) the amount of
filament arc length stored in their transverse thermal
undulations [1–4].
The collective mechanical response of filament bundles

is more complex than that of simple elastic rods. For
instance, bundles have a length-scale-dependent bending
modulus [5], whereas the underlying filaments typically do
not. The increased thickness of the bundle suppresses
collective bending deformations, so bundles are signifi-
cantly less compliant than their constituent filaments. But
bundles admit new internal degrees of freedom associated
with the filament reorganization. There are two relevant
defects associated with these rearrangements: braids, cor-
responding to the transposition of filaments within the
bundle, and loops, which trap extra length in a subset of
the bundle’s filaments between consecutive cross-links [6].
See Figs. 1(c) and 1(d) for schematic diagrams of pairs of
loops and braids, respectively. Forming these defects from a
quench by adding cross-linkers is commonplace, but since
the addition or removal of these defects requires a system-
sized rearrangement of cross-linkers, one cannot expect
them to form spontaneously. Rather, they form in defect-
antidefect pairs, which require only local cross-linker
rearrangements. Since these defect pairs are associated
with kinks, compressive loading suppresses the energy

barrier associated with defect pair production. As a result,
at a critical compressive stress, we expect defect pair
proliferation once the energy cost of pair production is
reduced to the thermal energy.
Stiff rods under compression are known to undergo a

mechanical instability—Euler buckling [7,8]. We find that
Euler buckling is precluded in bundles by another type of
instability: at compressive stresses lower than the Euler
buckling threshold, the bundles shorten by the thermally
activated production of pairs of topological defects, leading
to localized regions of bending deformation—kinks—unlike
the system-sized bends encountered in Euler buckling.
Defect pair production is analogous to the Schwinger

effect, in which electron-positron pair production was
predicted in a sufficiently strong static electric field
[9,10]. The forces due to the large electric field on the
charged particle pairs pull them apart, stabilizing these
quantum fluctuations of the vacuum. In the same way, it is
energetically favorable for thermally generated defects to
be produced under bundle compression. We term this
mechanism the “thermal Schwinger effect.”
To preserve the cross-linking structure far away from a

defect pair, the length stored by defects must be conserved,
so each defect carries a conserved scalar charge associated
with length. A loop defect takes up excess length and
its antidefect returns it. Similarly, braids carry a charge
associated with the modified braid group. To preserve the
cross-linking structure far away from the defect pair, the net
braid charge of the defects must vanish; i.e., the braid-
antibraid pair must be associated with inverse operations of
the braid group. Each defect in a three-filament bundle then
carries a charge from the product group Br3 × Z2 ×R2 (see
Supplemental Material [11]). In the following, loops refer
to defects with zero braid-group charge, and braids carry
the scalar length charge necessary to minimize their defect
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core energy. We leave more complex defect structures to
future work. Defect pair production shortens the end-to-end
distance of the bundle through the length stored in the
defects’ cores and in the bundle’s kinking at the defects,
reducing the formation energy cost of the defect pair under
compression. Compression is the analog of the applied
electric field in the Schwinger effect since it decreases the
energy cost of defect pair production. For the case of current
interest, the defect pairs are created by thermal, not quantum,
fluctuations. Loop defects separate under compression, like
the electron-positron pairs in the applied electric field.
Braids, however, attract each other, forming bound states,
which has no analog in the standard Schwinger effect.
We first consider production energy of loop and braid

defects in a compressed bundle in order to compute the
loop pair production rate at temperature T in a calculation
reminiscent of the Kramers escape problem [12,13]. To
compute the minimal energy configuration for stable and
metastable states of the N-filament bundle under a com-
pressive force F, we introduce the energy

E ¼ −FΔLþ μlþ
XN
i¼1

Z
ds

κi
2
ð∂st̂iÞ2: ð1Þ

The first term gives the energy reduction due to the
shortening of the bundle’s end-to-end distance ΔL. The
cross-linkers have binding energy μ per unit length. Since
defects disrupt cross-linking over a distance l, their
presence increases the system’s energy as reflected by
the second term on the right-hand side of Eq. (1). The third
term gives the bending energy stored in the bundle, where
κi and t̂iðsÞ are the bending modulus and tangent vector of
the ith filament. s is the arc length along the bundle. We
neglect torsion, so all defect energies are actually lower
bounds. There will be a continuous spectrum of excited
states due to trapped torsion.
We examine first a pair of loop defects while assuming

the compressive load to be sufficiently weak so the

characteristics of the loop, i.e., the dependence of its kink
angle and energy on its size, can be taken from our previous
calculations in the zero-compression limit [6]. We discuss
the effect of the changing angle later and in the
Supplemental Material [11]. The kink angles generated
by neighboring loops are equal and opposite, since the
amounts of their trapped length have to be equal and
opposite (which also makes the loop sizes equal, see
Supplemental Material [11]). A pair of loops produce a
“z bend” where parts of the bundle not lying between the
loop pair are parallel and offset in the normal direction to
the undeformed bundle—Figs. 1(a) and 1(c). This result
holds even for bundles having filaments of differing
bending moduli, as long as the excess trapped length in
the loop is much smaller than the total length of the
defected region. For simplicity, we focus on the case of
equal bending moduli. Then the total energy of configu-
ration with two loops of size l=2 each, generating kink
angles ϕ, and separated by a distance R is

Etot ¼ g1μl − FRð1 − cosϕÞ: ð2Þ

The first term in Eq. (2) is the energy of the pair of loops of
length l=2, with coefficient g1 ≈ 1.48 (see Supplemental
Material [11]). The second term is the decrease of energy
due to the compression [see Fig. 1(c)]. As long as F ≪ μ, it
is not important whether we define R to be the distance
between centers of loops or their edges, since the difference
will be small in comparison with the first term. However,
we pick R to be the distance between closest edges, so it is
equal to zero when loops are not yet separated.
Loop formation involves cross-linker removal and fila-

ment bending, leading to an energy increase of g1μl as the
loop size l increases. At some loop size l0, the two
growing loops separate due to random fluctuations. Once
separated, the loops can no longer exchange trapped length,
so their lengths are now fixed at l0=2 each (see
Supplemental Material [11]). As the distance interloop

FIG. 1. Fluorescence microscopy images of a z bend (a) and a u bend (b) in a collagen bundle. (c) Two loops under compression form
a z bend. (d) Two braids under compression form a u bend. (e) Angle ϕ produced by a loop pair (blue, left axis) and energy difference
between the looped and straight bundle as a function of dimensionless torque (red, right axis). (f) Angle ϕ produced by a braid pair (blue,
left axis) and the energy difference between braided and straight bundles as the function of dimensionless torque (red, right axis).
(Images courtesy of E. Botvinick and Q. Hu.) (b) is reused from [6].

PHYSICAL REVIEW LETTERS 127, 157801 (2021)

157801-2



distance R of the z bend grows, the energy of the com-
pressed bundle decreases due to shortening along the
direction of the compressive force. We can consider this
process as an escape from the potential well using x as a
single reaction coordinate describing the growth of the loop
sizes while they overlap and then their separation afterward

UðxÞ ¼
�
g1μx; x < l0

g1μl0 − Fð1 − cosϕÞðx − l0Þ; x > l0;
ð3Þ

x grows with the sizes of the loops x ¼ l before separation
(upper equality), and then describes the distance between
the separated loops x ¼ R (lower equality). The effective
potential for the growing loops increases linearly with loop
size up to the final loop size l0 and then decreases linearly
due to the shortening of bundle. Taking into account the
change of the angle due to increasing torque leads to faster
decrease of the potential, which accelerates pair production.
Here we present the calculation for the lower limit of
the production rate, when the angle is assumed to be
constant, and consider the effect a changing angle in the
Supplemental Material [11].
Treating pair production as a Kramers escape problem

[12] in the potential Eq. (3), we compute the escape rate r,
the rate of loop pair production in thermal equilibrium
at a fixed compressive stress. We compute this rate as the
inverse of the mean time to escape using the standard
Kramers approach for an overdamped system,

r−1 ¼ 1

D

Z
x0

0

dyeβUðyÞ
Z

y

0

dze−βUðzÞ; ð4Þ

where x0 is defined such that Uðx0Þ ¼ 0 and β ¼ 1=kBT.
We introduce a loop diffusion constant D ∝ koffΔx2 in
terms of koff , the rate of cross-linker unbinding and the
distance between consecutive binding sites of those cross-
linkers along the filament Δx.
Performing the integral in Eq. (4) in the limit of small

F=μ and ϕ (see Supplemental Material [11]), we obtain

r−1 ¼ 4

Dβ2F2ϕ4

�
τϕ2

2g1
eηϕ þ ηϕ − 1þ e−ηϕ

�
; ð5Þ

where we introduce the dimensionless parameters τ ¼ F=μ
and η ¼ g1g2β

ffiffiffiffiffi
κμ

p
, with g2 ≈ 4.8 relating defect size to the

kink angle it produces: l ¼ g2
ffiffiffiffiffiffiffiffiffiffiffiðκ=μÞp

ϕ (see Supplemental
Material [11]). The pair production rate r vanishes as ϕ
goes to zero since the potential barrier width diverges as
1=ϕ2. Conversely, very large angle kink production is also
suppressed (r → 0 as ϕ → ∞) due to the increasing energy
of the loop. The rate of pair production has a maximum
at a finite angle—see Fig. 2. We obtain a prediction for
the most commonly produced kink angles in z bends as a
function of material parameters of the bundle and the
applied compressive load. In the limit of weak

compression, the maximum loop pair production rate
rmax (z-bend formation rate) occurs at angle ϕ⋆ (see
Supplemental Material [11] for details),

ϕ⋆ ¼ η−1 log

�
6g1η2

τ

�
; ð6Þ

rmax ¼
D
3

�
τ logð6g1η2τ Þ

2βκ

�2
: ð7Þ

The production rate of the z bends increases as the
compressive force squared and is rather sharply peaked—
Fig. 2—as a function of angle, suggesting that, for fixed
material parameters, including bundle sizes, one expects to
observe a narrow range of z-bending angles. The most
probable z-bend angle scales roughly as kBT=

ffiffiffiffiffi
κμ

p
; the

binding energy of the linkers determines the typical observed
angles for bundles of a fixed number of filaments. Finally,
as the bundle size grows, the effective κ increases, driving the
z-bend angles to zero.
We now examine the production of braid-antibraid pairs

in a three-filament system. Within the lowest energy
configuration of the braid, two of the filaments follow
the same trajectory, allowing us to reduce the problem to
that of studying two filaments in 2D. We call the case of
two filaments with equal bending moduli a pseudobraid,
reserving the name braid for the more physical but
analytically less tractable case of unequal bending moduli
κ1 ¼ 2κ2. See Ref. [6] for further details.
Unlike in the case of loops, only the magnitude of the

kink angles produced by the braid pair must be equal.
The kink angles generated by braids thus do not have to
form z bends; in fact, the lowest energy state will be a
u bend, as shown in Fig. 1(b). This energy is minimized
when the two defects are close to each other and localized
in the middle of the bundle, since this provides the greatest
shortening in response to the force. We speculate that braid
defect colocalization is the primary reason for the rarity of
u-bend observations as compared to z bends (see Ref. [6]).
It could be easy to misinterpret u bends as a single defect
with a larger kink angle.
To study braids, we introduce two dimensionless param-

eters: a material parameter ζ ¼ ðμa2=κÞ and an applied

FIG. 2. Dimensionless loop pair production rate with η ≈ 22.5,
τ ¼ 0.1 [see Eq. (5)].
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force f ¼ ðFRa=κÞ, where a is the spacing between the
centerlines of the filaments enforced by the cross-linkers.
We find that, up to a critical compression f⋆ðζÞ, implicitly
determined by

Z
1

0

ðζ− ffiffiffiffi
2ζ

p Þ2
f2 tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðζ− ffiffiffiffi
2ζ

p Þ2
f2 t2

q ffiffiffiffiffiffiffiffiffiffi
1 − t

p ¼
ffiffiffiffiffiffiffiffi
ζ=2

p
; ð8Þ

the minimum energy configuration of the braid-antibraid
pair remains that of an unkinked bundle as shown in
Fig. 1(f). This is distinct from the case of loop pairs where
low-angle loops can form at any compressive load. For
f > f⋆ðζÞ, the defect pairs produce finite-angle kinks
making a u bend—Fig. 1(f).
Solving Eq. (8) numerically [which agrees with the

numerical minimization of the energy Eq. (1)], we obtain a
phase diagram spanned by compressive loading f and ζ
shown in Fig. 3. The graph is the critical loading for u-bend
formation versus linker binding energy μ at fixed κ and a.
The nonmonotonic behavior of the curve can be understood
as follows. For sufficiently large μ, kinks appear at braids
even at zero compressive stress, but as the linker binding
energy decreases, kink formation is energetically unfavor-
able unless the shortening of the bundle under load
produces a sufficient energy reduction. For small enough
linker binding energy, the defected regions extend in arc
length, thereby becoming more bending compliant so that
there is a reentrant kinking regime at small μ. The behavior
of the more physical, asymmetric case (green circles) is
similar to that of the pseudobraid (red circles and blue line),
but the transition is shifted to higher compressive loads due
to the increased bending rigidity of the system.
Upon increasing the compressive load, we predict that

bundles should first shorten by producing loop pair defects
creating z bends, as found in the collagen bundles seen in
Fig. 1(a). Assuming the size of the bundles is known and
controlled, the resulting z bends will be generated with
reproducible angles, due to the peak in stochastic defect

production rate with angle as shown in Fig. 2. The high
polydispersity of typical biopolymer filament bundles
should spread out the distribution of z-bend angles. But
since the angle of maximum production ϕ⋆ ∼ kBT=

ffiffiffiffiffi
κμ

p
and for a bundle of N filaments κ ∼ N2, we expect
δϕ⋆ ∼ δNN−2. The peak in the z-bend angle distribution
may be hard to observe without some bundle control unless
N is large. If the cross-linking energy is sufficiently large,
the z-bend angles will vanish as ϕ ∼ 1=μ1=2. However, as
the distance R between the two loops increases, we cannot
continue to neglect the increase of the equilibrium loop
angle shown in Fig. 1(e), which may lead to observable
angles at large R, even if they were unobservably small
angles at formation. As shown in the Supplemental
Material [11], loop pairs will generically deform to sharp
angles—crumple—as they separate. Such large angles have
not been observed in collagen bundles [6]. This may be due
to one of two possibilities. The bundles may be short
enough that z bends would have to diffuse off the ends to
reach sufficient torque for crumpling, or defect motion
may be so slow that their equilibrium state is not typically
observed.
At higher compression, the u bends seen in Fig. 1(b) will

also be created when braid pair production is reduced to
thermal energy. One may ask whether braids or loops are
preferentially generated under particular conditions of fixed
torque. Defect formation is an inherently stochastic proc-
ess, but we expect that, since there is a continuous spectrum
of low-energy, small stored length loops, these should form
preferentially at lower temperatures. To further examine
this point, we provide in the Supplemental Material [11] a
phase diagram showing that loops storing small amounts
of excess length, leading to smaller kink angles ϕ, are
energetically favored over braid pair production when the
loop kink angles remain below a threshold ϕðζÞ.
Using estimates of ζ ∼ 0.1 [6] for filamentous actin

(F-actin) and collagen, we predict uncompressed bundles
support unkinked braids. Braid pair production leading to
u-bend formation should occur for compressive forces on
the order of 10 pN based on the phase diagram shown in
Fig. 3. DNA condensed by polyvalent ions and cross-linked
intermediate filaments have ζ ∼ 100 [6], suggesting that
there will be a number of kinked braids quenched into
the bundle. As a result, we expect these bundles to collapse
by bending at the preexisting braids, which introduce
more bending compliant regions via cross-linker reduction.
Finally, we note that under sufficiently large forces, Euler
buckling can take over from braid-generated u-bend for-
mation. We estimate that Euler buckling should be found
for FRa=κ ≈ 5 (see Supplemental Material [11]) for ζ ≈ 0.1
(this value increases with ζ), which is well above the region
shown in the u-bend phase diagram, Fig. 3.
The most direct test of the theory should be found in

compression experiments on individual bundles. For col-
lagen and F-actin, the necessary compressive forces are on

FIG. 3. Numerical minimization of the energy (red dots) and
analytical prediction [Eq. (8)] for a symmetric pseudobraid
κ1 ¼ κ2. The numerical solution of the more complex, three-
filament braid with κ1 ¼ 2κ2 (green circles) shows that the
transition is shifted to higher compression.
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the order of 10 pN, suggesting laser trapping experiments
as a probe. There remain a number of open questions about
more complex defects and their interactions on the bundle.
More complex defects containing excess length and braids
may form and may exchange length via the transport of
pure loop defects between them. Finally, since cytoskeletal
bundles are often found in conjunction with molecular
motors, one may ask how motor-induced forces drive
defect dynamics.
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