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The Berezinskii-Kosterlitz-Thouless (BKT) transition is the paradigmatic example of a topological
phase transition without symmetry breaking, where a quasiordered phase, characterized by a power-law
scaling of the correlation functions at low temperature, is disrupted by the proliferation of topological
excitations above the critical temperature TBKT. In this Letter, we consider the effect of long-range decaying
couplings ∼r−2−σ on the BKT transition. After pointing out the relevance of this nontrivial problem, we
discuss the phase diagram, which is far richer than the corresponding short-range one. It features—for
7=4 < σ < 2—a quasiordered phase in a finite temperature range Tc < T < TBKT, which occurs between a
symmetry broken phase for T < Tc and a disordered phase for T > TBKT. The transition temperature Tc

displays unique universal features quite different from those of the traditional, short-range XY model.
Given the universal nature of our findings, they may be observed in current experimental realizations in 2D
atomic, molecular, and optical quantum systems.
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Two-dimensional interacting systems are well known not
to display conventional symmetry-breaking transitions at
finite temperature, due to the Hohenberg-Mermin-Wagner
theorem [1]. Yet, a phase transition may appear driven by
topological defects, according to the celebrated Berezinskii-
Kosterlitz-Thouless (BKT)mechanism [2]. In the presence of
long-range interactions, the Hohenberg-Mermin-Wagner
theorem no longer holds and local order parameters, such
as the magnetization [3], may have a nonzero expectation
value. The question addressed by this Letter is the fate of the
BKT transitionwhen the rangeof the interactions is increased.
Sak’s criterion [4] provides a general argument for

understanding whether the long-range, power-law coupling
∼1=rdþσ in the classical OðNÞ model affects criticality. It
can be formulated as follows: at low momenta, the short-
range (SR) and long-range (LR) critical scaling of momen-
tum space propagators behave as

p−2þηSR vs p−σ; ð1Þ
respectively, where ηSR is the anomalous dimension of the
SR limit. Therefore, one can define a critical value of the

range of the interactions, σ� ¼ 2 − ηSR, such that, for
σ > σ�, the critical behavior is not affected by the presence
of LR interactions. The validity of Sak’s criterion for the
classicalOðNÞmodels has been the subject of considerable
scrutiny. Indeed, numerical evidences supporting (or
rejecting) Sak’s result are notoriously hard to obtain [5–7].
Intense theoretical investigations both via Monte Carlo
(MC) simulations [5,8,9], renormalization group (RG)
theory [10–12], and conformal bootstrap [13] appeared
all to confirm the validity of Sak’s conjecture for the LR-SR
crossover; so it is fair to conclude that the criterion has been
a useful tool to understand the critical behavior of LR
interacting systems [14–17]. The criterion is believed to
apply to all symmetry-breaking transitions in d ≥ 2. The
status of the d ¼ 2 classical XY model, however, is rather
different, and only few results (later commented) are
known. The main reasons are as follows: (i) Sak’s criterion
cannot be straightforwardly applied, since in the SR limit
the critical behavior is not described by a single RG fixed
point, but rather by a whole line of fixed points with a
temperature-dependent exponent ηSR. (ii) Numerically, the
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large number of nonvanishing couplings, coming form the
LR nature of the interaction, along with the logarithmic
scaling typical of 2D systems (the so-called “Texas state
argument” [18]) make the study of the 2D XY universality
notoriously challenging.
(iii) In the nearest-neighbor 2D XY model, the classical

treatment takes advantage of the duality construction [19],
through which one can famously relate the model to the
Coulomb gas [20,21] or the sine-Gordon model [21,22].
However, this is no longer the case already for next-to-
nearest-neighbors couplings.
(iv) It is known that, in the SR limit, the physics of the

2D classical XY model can be related to the one of the 1D
quantum XXZ model via its transfer matrix [23]. This
approach is based on the mapping to hard-core bosons, and
therefore to the XXZ model, and cannot be straightfor-
wardly applied to the case of XY LR interactions, as one
should show the RG irrelevance of terms violating the hard-
core condition. Moreover, let us remark that a 2D boson gas
at finite temperature with (isotropic) 1=r3 density-density
interaction does exhibit a BKT transition [24]; but this
interaction corresponds to a quantum 1D XXZ in which
only in the z − z interaction is long range.
(v) Finally, we observe that the treatment of the SR XY

model in 2D is very much simplified by the introduction of
the Villain model [25,26], which can be mapped exactly
onto the Coulomb gas and shares the same universality
class of the SR XY model. The physical reason of their
connection in the SR regime is that the (gapped) amplitude
fluctuations of the correspondingOð2Þ action are irrelevant
[27]. Thus, once the periodic nature of the phase is taken
care of, all the relevant information is present in the theory.
However, in the LR regime, the interplay between ampli-
tude and phase fluctuations cannot be neglected and it is not
known whether they still share the same universality class.
Despite these difficulties, the study of the LR XY model

is of great interest. Indeed, since its introduction, the BKT
mechanism [28–31] has been found to quantitatively
describe the universal scaling appearing in several 2D
systems with U(1) symmetry, ranging from thin 4He films
[32] to quasi-2D layered superconductors [33–37], exciton-
polariton systems [38], cold atoms in 2D traps [39,40], and
2D electron gases at the interface between insulating oxides
in artificial heterostructures [41–43]. Apart from these
experimental realizations, topological defects are expected
to be relevant in several natural phenomena outside the
condensed matter realm, such as DNA tangling or stripe
formation [44–46]. To understand how σ� is modified is
then a crucial question in all the cases in which a LR tail of
the interaction can be added or tuned, especially because
the spin-wave interaction term, already present in the SR
case, may destroy, partially or totally, the topological nature
of the phase transition. Moreover, the physics of LR
interacting systems has recently experienced a new wave
of interest, due to the current experimental realizations

on atomic, molecular, and optical (AMO) systems. In
particular, trapped ions [47,48], Rydberg gases [49], and
optical cavities [50,51] allowed the observation of plenty of
exotic equilibrium and dynamical phenomena induced by
LR interactions, including entanglement and correlations
propagation [52,53], dynamical phase transitions [54,55],
time crystals [54,56,57], and defect scaling [58,59]. These
experimental results stimulated an impressive theoretical
activity to characterize the equilibrium and dynamical
critical scaling induced by LR interactions in a wide variety
of different systems [17,60–65]. Despite this outpouring
theoretical activity and the long-standing relation between
topological scaling and LR interactions, the possible
corrections induced by power-law decaying couplings to
the topological BKT scaling remain an open question,
testable in experiments.
Model and preliminaries.—We consider a system of

planar rotators on a 2D lattice of spacing a, described by the
Hamiltonian

βH ¼ 1

2

X
i;j

Jji−jj½1 − cosðθj − θiÞ�; ð2Þ

where i; j ∈ Z2 and Jji−jj has a power-law tail: Jji−jj ∼
½g=ðji − jj2þσÞ� for ji − jj ≫ 1. The exponent σ is assumed
positive in order to ensure additivity of the thermodynamic
quantities [66]. For the following arguments, the specific
form of the couplings is not important, as long as there are
no frustration effects nor competing interactions.
Let us now summarize what we do know for sure about

the LR XY model (2): (a) For σ < 2, at low enough
temperatures, the system magnetizes, as rigorously proven
in [3]. MC simulations at σ ¼ 1 indicate an order-disorder
transition and no BKT phase at finite temperature [67].
Moreover, for σ ≤ 1 the critical exponents of the ferropar-
amagnetic transition are expected to be mean field [11].
(b) In agreement with (a), the spin-wave theory in which the
cosine is expanded to the quadratic order, without imposing
the periodicity, as in the original Berezinskii calculation
[28], does also magnetize for σ < 2, since the contribution
of the spin fluctuations is of the form

R
d2q=qσ and thus

infrared finite. (c) An upper bound for σ� has to be σ� ¼ 2,
i.e., for sure there is BKT for σ > 2, as one can deduce even
from Sak’s argument, since η is positive. This result is
supported by the self-consistent harmonic calculation
recently presented in [68], which anyway is unable to
make even qualitative predictions for σ < 2.
Effective model.—We decompose the coupling as

Jji−jj ¼ JSji−jj þ gji − jj−ð2þσÞ, where JS is a SR term taking
into account the small-distance behavior of the coupling. At
low temperatures, the spin direction varies smoothly from
site to site and, as a consequence, we can expand the SR
term for small phase differences as cos½θðxþ rÞ − θðxÞ�∼
1 − j∇θj2=2. The same, however, it is not automatically
true for the LR term, since far-away pairs, whose phase
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difference is not necessarily small, give a significant
contribution to the Hamiltonian.
These considerations allow us to write a continuous

version of the Hamiltonian in Eq. (2) in terms of the field
θðxÞ, namely, the Euclidean action

S½θ� ¼ J
2

Z
d2xj∇θj2 þ SLR; ð3Þ

where the LR part can be written as

SLR ¼ −
g

2γ2;σ

Z
d2xðcos θ∇σ cos θ þ sin θ∇σ sin θÞ; ð4Þ

with γ2;σ ¼ 2σΓ(ð1þ σÞ=2)π−1jΓð−σ=2Þj−1, by using the
definition of (bulk) fractional derivative (see Supplemental
Material [69]). The first and the second term in Eq. (3)
account for the short- and long-range contributions, respec-
tively, with J ∼ 1=T and g ∼ 1=T being the temperature-
dependent couplings [70].
If g ¼ 0, by following the usual duality procedure [26],

one can take into account the periodic nature of the field θ
in Eq. (3) by isolating the topological configurations and
introducing the vortex fugacity y ¼ expð−εcÞ, εc being the
corresponding core energy. This, in turn, leads to the
Kosterlitz-Thouless RG equations [26,29,30,72] (see
[73,74] for textbook presentations), which feature a line
of stable Gaussian fixed points for y ¼ 0 and J > 2=π,
describing the power-law scaling observed in the low-
temperature BKT phase. For g small enough, we expect to
have then a continuum theory described by the three
parameters J, g, and y.
In order to explore the effects of LR interactions, we

deform the traditional BKT fixed-points theory with the
nonlocal operator in the second term of Eq. (3). Since only
those fixed points that are stable under topological pertur-
bation correspond to an infrared limit of the SR BKT
theory, we can restrict ourselves to the region in which the
topological excitations are irrelevant (ðJ > 2=πÞ). The
relevance of the LR perturbation depends on the scaling
dimensionΔg of the coupling g, which is defined according
to the asymptotic behavior gl ≈ expðΔglÞ for l ≫ 1,
where as usual in the BKT literature, we put
l ¼ lnðr=aÞ. On the other hand, due to the Gaussian
nature of the measure,

hcos ½θðxÞ − θðx0Þ�i ¼ e−
1
2
h½θðxÞ−θðx0Þ�2i ¼ jx − x0j−ηSRðJÞ;

ð5Þ

where ηSRðJÞ ¼ 1=2πJ is the exponent of the SR two-point
function [26,29,30]. Following Eq. (5), the scaling dimen-
sion of the LR term reads

Δg ¼ 2 − σ − ηsrðJÞ; ð6Þ

so that the LR perturbation becomes relevant only if
σ < 2 − ηSRðJÞ, similar to the traditional spontaneous
symmetry-breaking (SSB) case [11], but with a temper-
ature-dependent anomalous dimension. This confirms that
for σ > 2 the LR perturbation is always irrelevant, as
expected.
Let us now consider the case σ < 2. There, the LR

perturbation becomes relevant at small temperatures, since
ηSR ≃ 0 for T ≃ 0. Since ηSR in Eq. (6) is the one of the SR
unperturbed theory, we can apply the results of the tradi-
tional BKT theory [75] as long as the LR perturbation is not
relevant. In particular, we know that topologically excita-
tions are irrelevant for ηSR < 1=4, so that, in the range
7=4 < σ < 2, a subset of the BKT fixed points remains
stable and we have quasi-long-range order (QLRO) for a
certain temperature window. This result is rather nontrivial,
since in SSB transitions the traditional Sak’s result [4]
predicts the irrelevance of LR couplings at all temperatures
for σ > 2 − ηSR.
RG flow.—These results may be confirmed by deriving

the flow equations for the LR term at the leading order in g
for y ¼ 0, obtaining [69]

dgl
dl

¼ ½2 − σ − ηSRðJlÞ�gl;
dJl
dl

¼ cσηSRðJlÞgl; ð7Þ

where cσ ¼ ðπ=2Þa2−σ R∞
1 du u1−σJ 0ð2πuÞ and J 0ðxÞ is

the zeroth-order Bessel function of the first kind. As shown
in the Supplemental Material [69], the above result is
reliable as long as a2−σgl ≪ Jl or, equivalently, as long as
dJ=dl ≪ Jl. The RG flow is depicted in Fig. 1 As
expected, we see that the flow equations (7) support a
line of SR fixed points g ¼ 0, which becomes unstable for
ηSRðJÞ < 2 − σ. As long as our hypothesis of small g holds,
we can explicitly identify the form of the flow trajectories
of Eqs. (7),

glðJÞ ¼
πð2 − σÞ

cσ
½ðJl − JσÞ2 þ k�; ð8Þ

where k is a real number and Jσ ¼ ½2πð2 − σÞ�−1. The sign
of k divides the trajectories that met the fixed point g ¼ 0
and those that do not, the first ones ending at (starting from)
the fixed-point line for J ≤ Jσ (J > Jσ). The separatrix
corresponds to the semiparabola with k ¼ 0, J ≤ Jσ. For
k > 0, g → ∞, showing the existence of a new low-
temperature phase, where LR interactions are relevant.
The critical temperature Tc, below which this new phase
appears, is such that ηSRðJcÞ > 2 − σ.
Since, as in the traditional BKT calculation [29], Eqs. (7)

were derived for small g and y, its use for T < Tc is, in
principle, not justified, since LR interactions are relevant
and gl grows indefinitely. However, let us notice that the
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scaling of gl with T for T → T−
c can be reliably predicted

from Eqs. (7), since in this limit the flow spends a divergent
amount of RG time l in the vicinity of the line of fixed
points g ¼ 0. This scaling is derived in the Supplemental
Material [69]. Moreover, we can guess the infrared form
of the action in the low-temperature phase by observing
that the rigorous result of Ref. [3] implies that for T < Tc
the system displays finite magnetization and, then, phase
fluctuations are limited even at large distances. Therefore,
the expansion of the trigonometric function in Eq. (3) is
justified, leading to an action of the form

Sg ¼ −
ḡ
2

Z
d2xθ∇σθ; ð9Þ

where ḡ ¼ gγ−12;σ . Being the above action quadratic, the
properties of this exotic low-temperature phase can be
worked out: in particular, the scaling of the magnetization
for T → T−

c is found to be [69]

lnm ∼ −eBðTc−TÞ−1=2 ; ð10Þ

where B is a nonuniversal constant. Since all the derivatives
of m with respect to T vanish at T ¼ Tc (essential singu-
larity), and since m is linked to the derivative of the free
energy with respect to the external field, we have that the
phase transition between the ordered and disordered phase is
actually of infinite order. Moreover, the connected correla-
tion functions have a power-law decay for T < Tc given by
hSðrÞ · Sð0Þic ∼ r−2−σ , where SðrÞ ¼ ðcos θr; sin θrÞ.
We have so far assumed y ¼ 0; let us now consider the

effect of topological excitations. At leading order in both g
and y, the two perturbations remain independent and, since
the vortices contribute to the Jl flow only beyond leading
order in y, Eqs. (7) are unchanged. Moreover, one has
dyl=dl ¼ ð2 − πJlÞyl valid up to second-order terms in
yl and gl. Then, in agreement with what we stated above,
as long as 7=4 < σ < 2, the temperature range T between
Tc and TBKT of the line of fixed points g ¼ y ¼ 0 remains
stable under both topological and LR perturbations (see
Fig. 1). In the low-temperature phase, instead, it is natural
to suppose y to be irrelevant, because a non-negligible LR
coupling increases the cost of highly nonlocal topological
excitations. This idea is made more rigorous in the
Supplemental Material [69], where the interaction energy
between vortices in the low-temperature phase is computed,
and it is shown that they cannot proliferate.
Summarizing, for σ ∈ ð7=4; 2Þ we find three phases:

(i) an ordered phase for T < Tc with finite magnetization
and temperature-independent power-law correlation func-
tions, (ii) an intermediate BKT phase for Tc < T < TBKT,
where the magnetization vanishes and the exponent of the
two-point correlation function depends on T, and (iii) a
disordered phase for T > TBKT. Because of the LR char-
acter of the interactions, also the high-temperature phase

displays power-law decaying two-point functions
hSðrÞ · Sð0Þi ∼ r−2−σ [76–78]. As σ → 7=4þ, the critical
temperature Tc reaches TBKT from below. Therefore, for
σ < 7=4, all the fixed points in the BKT line become
unstable either with respect to topological or LR perturba-
tions and the intermediate phase vanishes, leaving only a
SSB phase transition. However, our approach cannot
reliably be used to fully characterize this transition: as T
approaches Tc from below, the RG flow slows down close
to the g ¼ 0, J ¼ Jσ fixed point. Since, for σ < 7=4 and
Jσ < JBKT, y grows indefinitely, away from the y ≪ 1
regime. Our results are summarized in Fig. 2.

FIG. 1. Sketch of the RG flow lines for 7=4 < σ < 2 in the
y ¼ 0 plane. The dashed red line is a possible realization of
the physical parameters line, from which the flow starts, as the
temperature is varied. On the right (left) of the gray dotted line,
the vortex fugacity y is irrelevant (relevant) (_yl=yl≷0). The two
separatrices (bold black lines) divide the flow in three regions: a
high-temperature region (orange, the flow ends up in the
disordered phase), an intermediate one (blue, the flow reaches
a g ¼ 0 fixed point), and the low-temperature region (green, the
LR perturbation brings the system away from the critical line).

FIG. 2. Sketch of the possible phases of the model: ordered
with magnetization (solid black), BKT QLRO (dashed light
gray), disordered (dashed dark gray). If σ > 2, we find the usual
SR phenomenology with a BKT phase transition. For σ < 2, an
ordered phase appears at low temperatures, the BKT QLRO
phase disappearing for σ < 7=4.
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Conclusions.—We have shown that the introduction of
LR power-decaying couplings in the 2D XY model
Hamiltonian produces a rich phase diagram, different from
the SR case [29] and from the one ofOðNÞ LR systems [4].
Remarkably, for 7=4 < σ < 2, the system displays both
BKT QLRO in the temperature interval Tc < T < TBKT
and actual long-range order for T < Tc.
The introduction of complex interaction patterns in

systems with U(1) symmetry is known to generate exotic
critical features, as in the anisotropic 3D XY model [79],
coupled XY planes [80], 2D systems with anisotropic
dipolar interactions [81,82], or four-body interactions
[83], and high-dimensional systems with Lifshitz criticality

]84,85 ]. This Letter constitutes a further milestone along
this path, as it identifies a peculiar critical behavior, namely,
a nonanalytic exponential vanishing of the order parameter,
that eludes the current classification of universal scaling
behaviors [86].
Our predictions may be tested in several low-

dimensional AMO systems. It would be interesting to
perform extensive numerical simulations in order to
observe the scaling of the critical quantities, and especially
the magnetization, close to the low-temperature end point
of the BKT line in the regime 7=4 < σ < 2. These
simulations will be useful to classify this unprecedented
transition and to investigate possible corrections near the
σ ¼ 7=4 end point due to higher-order effects caused by
spin-wave excitations [87]. Further investigation is also
needed to compare our results with the LR diluted model
studied in [88,89]. In this model, at σ ¼ 1.875, the
numerical simulations presented in [89] do not find any
intermediate BKT region, but the general question of
whether the 2D LR diluted XY model and the 2D LR
nondiluted one have the same phase diagram remains open.
Our results have also implications for LR quantum XXZ

chains [71,90,91]. One would need to perform the exact
mapping of the classical 2D LR XY model to an effective
1D quantum model, following the calculation presented in
[23] and valid for the classical 2D SR XY model. If the
nonlocal, LR terms violating the hard-core boson condition
can be shown to be irrelevant, then one could put in
correspondence our phase diagram with that of the LR
quantum XXZ chains having LR couplings both for x − y
and z − z terms [71]. This seems to be confirmed by the
similar structure of the RG flow equations of [71] with our
Eqs. (7) taken at low temperatures. If this is the case, then
the two lines, black and white, of Fig. 1 in [71] would
merge in a point, with the XY phase disappearing, corre-
sponding to our σ ¼ 7=4 point. Finally, we mention that it
would be interesting to study in detail the phase diagram of
the 2D LR Villain model for σ < 2.
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