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Dirac cones are essential features of the electronic band structure of materials like graphene and
topological insulators (TIs). Lately, this avenue has found a growing interest in classical wave physics by
using engineered artificial lattices. Here, we demonstrate an acoustic 3D honeycomb lattice that features a
Dirac hierarchy comprising an eightfold bulk Dirac cone, a 2D fourfold surface state Dirac cone, and a
1D twofold hinge state Dirac cone. The lifting of the Dirac degeneracy in each hierarchy authorizes the
3D lattice to appear as a first-order TI with 2D topological surface states, a second-order TI exhibiting 1D
hinge states, and a third-order TI of 0D midgap corner states. Analytically we discuss the topological origin
of the surface, hinge, and corner states, which are all characterized by out-of-plane and in-plane winding
numbers. Our study offers new routes to control sound and vibration for acoustic steering and guiding,
on-chip ultrasonic energy concentration, and filtering to name a few.
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Topological insulators and phases pertain to a prominent
key frontier in condensed matter physics that has provided
many exotic directions to inspire contemporary wave
control. Topological materials and their electronic band
structure belong to a different topological class compared
to ordinary insulators and metals [1–4]. Their topological
phases describe global properties of quantum states in
materials, which are resilient against perturbations that
preserve certain symmetries, such as inversion, rotation,
chirality, etc. Exotic quantum states have been investigated
extensively in various nanostructures such as high-quality
crystals, thin films, and epitaxially grown structures. Many
topological crystalline insulators have been engineered into
nanostructures through mechanical exfoliation or direct
growth synthesis [5–7]. Recently, a catalog was introduced
containing several thousands topological materials, which
were gathered using only symmetry data [8].
On a macro level where engineered acoustic and

mechanical structures are investigated, the fabrication is
much easier and so is the experimental characterization.
The field of topological phononics has borrowed a number
of blueprints used in electronic materials. However, when
constructed for classical waves, the sonic crystals and
metamaterials are chiefly based on manufactured scatterers
and resonance elements typically drilled or carved in metals
or 3D printed [9]. Hence, it is straightforward to craft
topological phases in acoustic lattices at desired spectral
regimes, by appropriately designing the building blocks
[10]. The hallmark of topological insulators (TIs) is wave
propagation and guiding in the absence of backscattering
by means of exotic surface and edge-state excitation.
Colorful examples comprise acoustic topological edge
states, which have been implemented in time-reversal
broken structures to mimic the quantum Hall effect.

Further, pseudospins have been designed to emulate the
quantum spin-Hall (QSH) effect, and quantum valley-Hall
phases have been engineered through the breaking of the
mirror symmetry [11–25]. As a counterpart to topological
systems abiding by the conventional bulk-edge correspon-
dence, 0D corner states in 2D and 3D have been successfully
demonstrated in very complex higher-order topological
insulators (HOTIs) [26–31]. In this Letter, we present an
approach which rests on stacking multiple 2D honeycomb
monolayers of interconnected waveguide channels, in order
to establish a Dirac hierarchy across multiple dimensions.
Since it is still very challenging to construct 3D HOTIs as
existing means require either highly cumbersome coupling
strengths or extremely complicated geometrical structures
[32–35], our strategy enables the creation of sonic multifold
Dirac cones (DCs) in the bulk, at the surface and hinges with
associated hierarchical phase transitions using the same 3D
base configuration.
We begin with an extended honeycomb cell containing

six sublattices in which the intermolecular coupling α
equals the intramolecular one β [Fig. 1(a)]. This design
ensures a double Dirac cone (DDC) (fourfold degeneracy)
at the Brillouin zone (BZ) center thanks to band folding
of DCs from the K=K0 points. Subsequently, we introduce
chiral symmetry along the perpendicular direction (z axis)
to the honeycomb plane (xy plane) by stacking several
monolayers of alternating interlayer coupling strengths γ
and γ0, in order to form a layered Su-Schrieffer-Heeger
(SSH) chain [Fig. 1(a) (bottom)]. Because of the chiral
symmetry, the eigenstates of the system come in pairs, i.e.,
each bulk state at energy þΔ has a chiral partner at −Δ.
When γ ¼ γ0, the DDC pair of two sublayers degenerates at
Δ ¼ 0, leading to an eightfold DC at the Z point as shown
in Fig. 1(a) (top), which can also be interpreted as the
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consequence of band folding the in-plane DDC along the z
direction. From here on, the Dirac hierarchy is born in the
bulk and cunningly unwrapped at the surface, hinges, and
corners. Thus, applying alternating interlayer coupling
γ=γ0 < 1 splits the eightfold DC with a first-order topo-
logical band gap that contains a fourfold surface DC, see
Fig. 1(b) (top). If we further enforce a Kekulé distortion
α > β to the extended cell, the surface DDC is gapped, i.e.,
the 3D structure becomes a second-order TI, supporting a
pair of gapless hinge states (twofold hinge DC) [Fig. 1(c)].
Also, the twofold hinge DC can be gapped by breaking the
mirror symmetry (δ ≠ 0) as shown in Fig. 1(d). Therefore,
the last nested element appears in the form of midgap
corner states of the third-order TI [magenta, see Fig. 1(d)],
which all together shows how the Dirac hierarchy
elegantly enables the targeting of exotic topological states
at various dimensions by deterministic interlayer and
intralayer engineering.
The Dirac hierarchy, using a Kekulé-layered SSH chain,

allows us to classify the system through a decoupling of the
master Hamiltonian,

H ¼ Hz ⊗ I6 þ I2 ⊗ Hxy; ð1Þ

whereHz ¼ γ00gðqzÞσ is the SSHHamiltonian with gðqzÞ¼
ðgx;gyÞ¼ðγ=γ0 þcosqz;−sinqzÞ and σ the Pauli matrix.
χ0 ¼ χ=t (χ ¼ α; β; γ; γ0) is the normalized coupling with
t ¼ αþ 2β þ γ þ γ0. Hxy ¼ ½0; hðqx; qyÞ; h�ðqx; qyÞ; 0� is
the Kekulé Hamiltonian with hðqx; qyÞ a 3 × 3 matrix, see
Supplemental Material [36]. qx, qy, and qz are the nor-
malized wave vectors along the x, y, and z directions,
respectively. IN is a N × N identity matrix. Note that
Hz (Hxy) has chiral symmetry Γj (Γ2

j ¼ 1) satisfying

ΓjHjΓj ¼ −Hj (j ¼ z; xy), see Supplemental Material
[36]. The eigenenergy of the system is given by

ε ¼ εz þ εxy ð2Þ

and expresses that it is composed of two independent parts:
the out-of-plane SSH eigenenergy εz and the in-plane
Kekulé eigenenergy εxy. The complete set of eigenstates
of H can be expressed as ψ ¼ ϕz ⊗ ϕxy, where ϕz (ϕxy)
denotes the eigenstate of Hz (Hxy). From this notation we
gather: if ϕz and ϕxy are bulk states, ψ is a bulk state too.
If ϕz is an edge state and ϕxy is a bulk state, ψ is a
surface state. Last, if ϕz is an edge state and ϕxy is an edge
(or 2D corner) state, ψ is a hinge (or 3D corner) state.
Based on Eq. (2), the dispersion relation of the 3D

crystal comprising twelve bands when α ¼ β ¼ 0.09 and
γ ¼ γ0 ¼ 0.365 is shown in Fig. 2(a), see the schematic in
Supplemental Material [36]. Because of the chiral sym-
metry Γz, the bulk state at þΔþ εxy has a chiral partner at
−Δþ εxy. Also, the chiral symmetry Γxy further constrains
the bulk bands to be symmetrical with respect to zero
energy. Since εz ¼ 0 when qz ¼ π, the six bands given by
εxy degenerate with their chiral partners. Interestingly, at the
Z point, a DDC degenerates with its chiral partner to form
an eightfold DC, whereas the remaining two chiral pairs are
symmetrically offset from zero energy. The eigenfields of
the eightfold degeneracy at the Z point [inset of Fig. 2(a)]
underline the dipole p and quadrupole d nature in addition
to either symmetric or asymmetric mode profiles.
By introducing a contrast among the interlayer couplings,
e.g., γ ¼ 0.09 and γ0 ¼ 0.64, the eightfold degeneracy is
split symmetrically into a DDC pair as shown in Fig. 2(b).
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FIG. 1. Acoustic Dirac hierarchy. (a) 3D honeycomb lattice made of multiple stacked Kekulé monolayers. An eightfold Dirac cone
(DC) appears at energy ε ¼ 0 at the Z point of the Brillouin zone (BZ). (b) The eightfold degeneracy becomes a first-order TI after
splitting into two fourfold DCs when the interlayer coupling γ < γ0. (c) A second-order TI with a pair of helical hinge states (magenta
and cyan lines) is unwrapped when SOC is induced via appropriate intralayer coupling, i.e., α > β. (d) Last, the 3D lattice transitions
into a third-order TI with a pair of midgap corner states (magenta dots) through mirror breaking by adding vertical coupling −δ to the
bonds along the y axis, and þδ=2 to the remaining ones.
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Their corresponding eigenfields [insets of Fig. 2(b)]
allow us to discriminate between energy-split S- and
A-type DDCs.
The SSH properties of the first-order TI give rise to

topological states at the xy surfaces, whose chiral origin is
characterized by the out-of-plane winding number defined
as [37–39],

W⊥ ¼
X6

j¼1

Wz; Wz ¼
1

2πi

I
∂qz lnðgx − igyÞdqz : ð3Þ

Wz that is the winding number of Hz, is computed as a
function of γ=γ0 as shown in Fig. 3(a) (green line) and
clearly displays a topological phase transition around
γ ¼ γ0. These topologically distinct phases are further
manifested through winding contours of gðqzÞ at the
origin when γ=γ0 < 1 (red circle) and beyond when
γ=γ0 > 1 (blue circle) [Fig. 3(a)]. Now, we compute the
projected surface dispersion of a truncated honeycomb first
order TI with ten layers stacked along the z direction, see
Supplemental Material [36]. We distinguish between two
cases, in that Fig. 3(b) represents a γ=γ0 < 1 interlayer
coupling, whereas Fig. 3(c) is computed with γ=γ0 > 1. The
data with circles are obtained by means of numerical
computations (gray bulk and surface states), whereas the
colored solid lines correspond to the surface states theo-
retically obtained by solving Eq. (1). Indeed, as predicted,
the six eigenfrequencies display a surface DDC around zero
energy, but only for the nontrivial scenario.
The next dimension of the Dirac hierarchy exhibits a

second-order TI when we lift the surface DDC through
a Kekulé distortion (α ≠ β) as shown in Fig. 4(a), see
the exact lattice in Supplemental Material [36]. Since the

Kekulé layer maintains the chiral symmetry Γxy, the
winding ofHxy along a specific hinge is defined as [40,41],

WkðqkÞ ¼
1

2πi

I
∂q⊥ ln½det hðqk; q⊥Þ�dq⊥ ; ð4Þ

where qk (q⊥) is the normalized wave vector of kk (k⊥)
parallel (perpendicular) to the hinge. kk and k⊥ are fixed
through the BZ area kk × k⊥ ¼ b1 × b2, where b1, b2 are
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FIG. 2. Bands and eigenfields of the degenerate and split
DCs. (a) The eightfold degeneracy at the Z point comprises
overlapping symmetric (S) and asymmetric (A) DDCs. The
colored lines represent the six theoretically obtained chiral
bands. The circles mark the numerical results. Inset: the
eigenfields of the Dirac point with dipole p and quadrupole
d nature. (b) Splitting of the symmetric and asymmetry DDCs
for interlayer coupling strengths, γ < γ0. Insets: the eigenfields
of the S- and A-type DDCs.
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FIG. 3. First-order TI. (a) The winding Wz vs γ=γ0. The
trajectories of gðkÞ with different topologies for γ=γ0 < 1
(γ=γ0 > 1) display the presence (absence) of the winding around
the origin. (b) Topological surface states appear in the xy plane
when γ=γ0 < 1, (c) while they cease to exist when γ=γ0 > 1.
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FIG. 4. Second-order TI. (a) Surface inversion diagram of the p
and d states with a Z2 topological phase transition at α ¼ β.
(b) Within the gap of the projected surface states (light blue) a
pair of helical hinge states (cyan and magenta, S�) appears along
the MZ hinges. Circles correspond to the computed results. The
insets show the unidirectional propagation at 903 Hz for the
clockwise Sþ and counterclockwise S− traversing hinge states.
(c) Distributions of θl in the 2D BZ. The red dashed box marks
the integral area for the MZ hinge along qk.
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the Kekulé reciprocal lattice vectors. As detailed in
Supplemental Material [36], if we treat the extended cell
as the combination of three sublattices, det h can be
expressed entirely analytically:

det h ¼ ρ1 þ ρ2 þ ρ3 ¼ jρjðeiθ1 þ eiθ2 þ eiθ3Þ; ð5Þ

where ρl ¼ ðα30 þ 2β30Þ=3 − α0β
2
0e

iql (l ¼ 1, 2, 3) with
q1 ¼ qx þ qy, q2 ¼ −2qy, q3 ¼ −qx þ qy. θl is the argu-
ment of ρl, representing the sublattices of the Kekulé
monolayer. From Eq. (5), Wk is analyzed based on θl.
The surface DDC exhibits acoustic pseudospin states
[insets of Fig. 4(a)], i.e., p� ¼ ðpx � ipyÞ=

ffiffiffi
2

p
, d� ¼

ðdxy � idx2−y2Þ=
ffiffiffi
2

p
(� is the spin index). Its correspond-

ing, surface band inversion (red and green lines) takes place
when spin-orbit coupling (SOC) is induced via tuning
of the parameters α=β, which leads to a surface QSH
phase that is captured by θl at the transition point. Color
maps in Fig. 4(c) within the 2D BZ display discontinuous
jumps among the three Kekulé phases θl. The Berry phase
comprising these Kekulé phases read BlðqkÞ¼ 1

2

H ∂q⊥θldq⊥ .
When the integration path q⊥ crosses such discontinuities,
the phase change is δθ ¼ �2π, which allows us to
determine the Berry phase Bl ¼ πNl through the integer
Nl that counts the number of these crossings [we define the
sign of Nl as positive (negative) for the −π → π (π → −π)
phase transitions]. Taking the molecular-zigzag (MZ) hinge
along ek ¼ ð1; 0Þ as an example (δ ¼ 0), we highlight the
integration path by a red dashed box in Fig. 4(c). Here, we
obtain N1 ¼ −1, N2 ¼ 2, and N3 ¼ −1, which results in a
total Berry phase of B ¼ P

Bl ¼ 0. In fact, due to time-
reversal and parity (mirror) symmetries, B is a Z2 quantized
number of 0 or π (mod 2π) [41], see Supplemental Material
[36]. Further, Wk ¼ 1

π B is zero due to time-reversal
invariance. However, we can define the net winding
number Wn which accounts for the difference between
positive and negative windings,

WnðqkÞ ¼ Wþ −W−: ð6Þ

Here, W� ¼ P½N�ðmod 2Þ� with � denoting the sign of
Nl. Finally, we define the in-plane winding number,

WI ¼ Wz ·WnðqkÞ; ð7Þ

which allows to characterize the hinge and corner states,
thusWI ¼ 2 at the transition point α ¼ β for the MZ hinge.
Conclusively, the manifestation of these attributes is a
second-order topological band gap of the surface DDC
(α > β), inside which a pair of helical hinge states is
created. The MZ hinge dispersion is shown in Fig. 4(b)
for a truncated 3D honeycomb lattice where we chose
α ¼ 0.16, β ¼ 0.09 and γ ¼ 0.09, γ0 ¼ 0.64. Within the
surface gap (light blue), a pair of helical hinge states S�

[cyan and magenta (circles) represent theoretical (numeri-
cal) results] emerge as identified by WI ¼ 2. The handed-
ness of the hinge states creeping around its topological
enclosure is showcased in the insets of Fig. 4(b), where at
903 Hz we selectively excite the respective pseudospin
state to enable hinge waves propagating either clockwise
(Sþ) or counterclockwise (S−). Note that, although WI
predicts the number of hinge states, the existence of zero
energy states (εxy ¼ 0) requires additional symmetry pro-
tection. Because of the MZ hinge (δ ¼ 0) exhibiting a
mirror that commutes with Γxy, the hinge states degenerate
at the BZ center at εxy ¼ 0, forming a twofold hinge DC. It
should also be mentioned that the windingWn in this work
is a global property defined by chiral symmetry, thus we
can precisely predict the appearance of hinge states across
the whole BZ. This is distinct from most of the existing
works of C6 protection where the topological phase of the
DDC is guaranteed only at the symmetry point.
The last nested element of the Dirac hierarchy is

unraveled by designing the third-order topological band
gap. This can be achieved simply by removing the mirror
from the MZ hinge such that the hinge DC at εxy ¼ 0 is
gapped due to the lack of mirror protection. The mirror is
broken by superimposing −δ to the bonds in the y direction
and þδ=2 to the remaining ones as depicted in Fig. 1(d)
[see also Fig. S5(a)]. The band diagram of the modified MZ
hinge in a semi-periodic third-order insulator is depicted in
Fig. 5(a) in which we clearly see a complete gap inhibiting
surface and hinge waves to traverse with respect to their
spectral color zones. Interestingly, if we ensure mirror
protection at the MZ corner (it must commute with Γxy),
WI ¼ 2 implies a pair of midgap corner states. The
corresponding finite-size computations [see Fig. S5(b)]
consist of seven vertically stacked monolayer-rhombi with
34 unit cells in each layer. The various topologically
confined states of this finite 3D lattice are computed and

Surface
Hinge
Corner

1

-1

E
nergy

0

(b)

860

940

900

Fr
eq

ue
nc

y 
(H

z)

0
Surface

Hinge

Number of modes
700 710 720 730

(a)
Surface

Hinge

x
y

z

Mirrorr

x
y

z

Mirror(c)

FIG. 5. Third-order TI. (a) Computed band diagram showing
the gapped surface and hinge bands (circles represent numerical
simulations) and (b) the corresponding eigenstates for a finite 3D
lattice at their various localizations. (c) The eigenfields of the
mirror-protected corner states seen in (b).

PHYSICAL REVIEW LETTERS 127, 156401 (2021)

156401-4



displayed in Fig. 5(b). Each spectral zone hosts eigenstates
with respect to their dimensionality, i.e., our computations
predict 2D surface states at around 930 Hz, 1D hinge states
at 910 Hz, and 0D corner states, midgap at 895 Hz. The
latter are two εxy ¼ 0 corner states whose eigenfields that
are displayed in Fig. 5(c) display the typical high concen-
tration of sound at the mirror-protected corners of the
3D body.
In this work, we have demonstrated a Dirac hierarchy

encompassing multiple degenerate Dirac cones, which
when appropriately gapped, gives access to various topo-
logically confined acoustic excitations comprising surface,
hinge, and corner states, all using the same base configu-
ration. Through theoretical predictions that are in good
agreement with numerical simulations, we exemplify how
these Dirac degeneracies and topological states of differing
dimensionalities can be generated in a 3D honeycomb
lattice by appropriately tuning the interlayer and intralayer
coupling strengths. We foresee that this facile configuration
can be readily implemented through 3D printing [42].
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