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Two-dimensional (2D) materials can roll up, forming stable scrolls under suitable conditions. However,
the great diversity of materials and fabrication techniques has resulted in a huge parameter space
significantly complicating the theoretical description of scrolls. In this Letter, we describe a universal
binding energy of scrolls determined solely by their material parameters, the bending stiffness, and the
Hamaker coefficient. Aiming to predict the stability of functionalized scrolls in water solutions, we
consider the electrostatic double-layer repulsion force that may overcome the binding energy and flatten the
scrolls. Our predictions are represented as comprehensive maps indicating the stable and unstable regions
of a rolled-up conformation state in the space of material and external parameters. While focusing mostly
on functionalized graphene in this work, our approach is applicable to the whole range of 2D materials able
to form scrolls.
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Introduction.—Rolling up a microscopic solid structure is
a highly nontrivial way to alter its properties [1–4], e.g., its
electron magnetotransport [5], plasmon [6], and spin [7,8]
dynamics. The recent advent of two-dimensional (2D)
materials has widened the research field to include ultrathin
scrolls [9–11]. The functionalization ability of 2D scrolls
[12–15] has ignited interest in various applications ranging
from superlubricants for nanoparticles [16] to supercapaci-
tors for miniaturized electronics [17,18]. Certain function-
alized 2D materials allow for a transition between flat and
rolled-up conformation states depending on the solution
content and can be seen as 2D polyelectrolytes [19]. This
fact opens possibilities for the mass production of 2D scrolls
in a solvent [20–23]. Further development of fabrication
techniques and potential applications of 2D scrolls require a
theoretical model predicting the stability of the scrolls in
aqueous solutions subject to external conditions.
The stability of 2D scrolls depends on multiple factors

such as bending stiffness, thermal fluctuations, wrinkling
[24], edge defects [25], and, above all, the interlayer
adhesion. Analytical models [26,27] and molecular
dynamic simulations [27–29] agree that the major contri-
butions come from elastic and van der Waals forces playing
competing roles. However, once immersed in water, the
functionalized scrolls experience additional double-layer
electrostatic interactions that can break the balance of
forces and flatten the scrolls back to flakes [30]. As the
scrolls can be made of different materials with various
functionalizations, an explicitly solvable model is needed
to describe all possible parameter combinations at once.
Despite recent theoretical efforts [26,27,30] the solutions
found are still far from universal, limiting their

applicability. Here, we offer an elegant solution of the
scroll stability problem, mapping all relevant interactions
onto the Archimedean spiral—the most natural shape for
any rolled-up elastic band. The model applies to a broad
range of 2D materials—from superflexible [31] graphene
oxide (GO) to much more rigid [32] graphene.
Model.—The scroll shape shown in Fig. 1(a) can be

described in polar coordinates fφ; rg by the following
simple equation:

rφ ¼ φ

2π
d; ð1Þ

where d is the interlayer distance and its relation to the
linear size L is given by
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The typical images of scrolls [19,30] indeed suggest uniform
interlayer separation consistent with our assumption.
Equation (2) makes sense for scrolls as long as
jϕ0 − ϕ1j ≥ 2π. Note that the interlayer distance does not
depend on the winding number even though the radius of
curvature does. In what follows, we find a universal (i.e.,
independent of the geometrical parameters d and L) expres-
sion for the scroll binding energy and consider the stability
of scrolls subject to electrostatic double-layer repulsion.
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Binding energy.—The binding energy of a scroll is
determined by the interplay between the bending stiffness
D trying to unroll the scroll and the counteracting van der
Waals interlayer adhesion parameterized by the Hamaker
constant H. The elastic energy [33,34] can be expressed
through the surface integral over the local curvature squared,
Eel ¼ ðD=2Þ R d2rR−2ðrÞ, and the van der Waals energy
is dominated by the intermolecular London contribution
[35,36] given by Emol ¼ −ðH=12πd2ÞAo, with Ao being the
interlayer overlap area. We estimate the area as Ao ∼ L2,
with L being the characteristic size of the flakes. We map
both energy contributions onto the Archimedean spiral
with φ0 fixed and φ relaxed [Fig. 1(a)]. We minimize the
total energy Eðφ0;φÞ ¼ Eel þ Emol and find φ ¼ φ1 at
which the Archimedean scroll stabilizes [Fig. 1(b)]. The
differential geometry suggests 1=RðφÞ¼jr2φþ2r02φ −rφr00φφj=
ðr2φþr02φ Þ3=2; hence, Eel reads

Eel ¼
DL
2
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Note that both elasticEel ∝ L=d and adhesionEmol ∝ L2=d2

energies are scaled by the ratio L=d, which can be written in
terms of φ and φ0 by means of Eq. (2) with φ1 ¼ φ. This
allows us to get rid of the parameters L and d altogether and
develop a universal model in terms of the angles φ and φ0.
The approach would not work for the non-Archimedean
geometries.
Despite the relative simplicity of Emol and Eel, the

resulting Eðφ0;φÞ is still difficult to analyze. We therefore
expand Eðφ0;φÞ in terms of Δφ ¼ φ − φ0 ≪ φ;φ0 and
write Eðφ0;φÞ as

Eðφ0;φÞ ¼ D
Δφ2

2
−H

φ2Δφ2

48π3
; Δφ > 2π: ð4Þ

Note that Δφ > 2π because the interlayer overlap area is
finite if and only if the scroll makes at least one full turn.
The price we pay for the expansion in terms of Δφ is that
we can no longer find an exact value for Δφ, which should
be just taken close to 2π. Nonetheless, Eðφ0;φÞ correctly
reproduces the physical picture: (i) the energy rapidly
increases up to a large positive value at small φ, indicating
strong elastic strain, and (ii) drops down to negative infinity
∝ −φ4 at φ → ∞ describing unrolling process. There is
also a cubic term ∝ 2φ0φ

3 that is responsible for a local
energy minimum at which the scroll may stabilize.
Limiting ourselves to positive φ0 and φ, we find that the

local energy minimum disappears at ϕ0 ¼ φcrit given by
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2π
¼

ffiffiffiffiffiffiffiffiffiffi
6π

D
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r
; ð5Þ

see Fig. 1(b). To be specific, consider φ0 > φcrit. In this
case, the energy local maximum is at φ ¼ φ0, and the local
minimum is shifted to the left from the maximum by
Δφ ¼ 3φ0=4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2
0=16þ φ2

crit=2
p

; see Fig. 1(b). Since Δφ
must be small but not less than 2π, we set the border
value Δφ ¼ 2π, and after some algebra we obtain the
coordinates for both the local energy maximum (φ0) and
minimum (φ1) as
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The binding energy Eb can be found easily from Eq. (4) as
Eb ¼ −Eðφ0;φ1Þ, with φ0;1 given by Eq. (6); see also the
red line in Fig. 1(b). The binding energy depends solely on
the material parameters H and D no matter how large the
scroll is. In the limiting case of either very soft [31] or very
stiff [32] material, Eb can be written explicitly as

Eb ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π2HD=3
p

; H ≪ D;

2π2Dþ πH=3; H ≫ D:
ð7Þ

FIG. 1. (a) Schematic image of a rolled-up2D flake and themodel
parameters involved. The shape is given by Eq. (1). (b) Energy of a
scroll given by Eq. (4) at a fixed φ0 as a function of φ in the case of
equal bending stiffness and the Hamaker constant D ¼ H. The
energy behaves qualitatively similarly at any reasonable difference
between D and H. There is no local energy minimum (hence, no
binding energy) at φ0 ¼ φcrit, given by Eq. (5). The binding energy
exists at φ0 > φcrit. Here, φ0;1 are given by Eq. (6).
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The limit H=D → ∞ cannot be described as it implies
φcrit → 0, which contradicts our initial assumption of large
φ0;1. Physically, the scrolls collapse, losing any regular
structure in that limit. The material may also be too rigid to
form scrolls at D ≫ H.
Figure 2 shows Eb for arbitrary pairs of H and D. The

Hamaker constant may reach 100 zJ in vacuum [35,37], but
it is reduced at least by an order of magnitude in water
[35,36]. The exact value strongly depends not only on the
parent material but also on the layer thickness [38], layer
curvature [39], interlayer media [40], and functionalization
[41]. The bending stiffness is about 100 zJ for pristine
graphene [32], but it drops drastically down to 4 zJ upon
functionalization [31]. If either D or H is too low, then the
binding energy is low and the scrolls are unstable in water.
To maintain the stability of the scrolls, we need not only
good interlayer adhesion but also a suitable material
elasticity.
Our model gives reasonable predictions for the actual

GO scrolls studied in Ref. [30]. The inner radius rðφ1Þ ¼
2.5 nm and interlayer distance d ¼ 0.62 nm results in
ϕ1 ∼ 25 rad, very close to the model value at H=D ∼ 1;
see also Fig. 1(b). Taking D ¼ 4 zJ for GO [31], we obtain
the reasonable Eb ∼ 5kBT suggesting that the scrolls are
stable at room temperature T. (Here, kB is the Boltzmann
constant.) A similar analysis can be performed for graphene
with alternative functionalizations [19].
Stability of scrolls in aqueous solutions.—Functionalized

2D materials immersed in an aqueous solution may acquire
a surface charge that, in turn, creates a certain electrostatic
potential. The resulting electrostatic repulsion between

neighboring winds may unroll the scroll. In an electrolyte,
however, the counterions are able to screen the interlayer
repulsion [42]. The counterions form the Stern layer at the
interface and the diffuse layer farther away from the
charged surface. The former contains immobile counterions
and reduces the true surface potential down to the so-called
ζ potential measured in the diffuse layer [15]. The diffuse
layer contains mobile counterions, resulting in osmotic
pressure [35].
The physics behind the interlayer pressure is based on the

solution of the Poisson-Boltzmann equation [35]. The
equation can also be solved in the cylindrical coordinates
relevant for our geometry [43–46]. Although our surfaces are
curved, the radius of curvature is much larger than the
interlayer distance. One can show that the solution converges
to the well-known planar expression in this case [42].
In contrast to the elastic and van der Waals interlayer

adhesion energies, the electrostatic double-layer repulsion
energy does not scale by the ratio L=d, spoiling the
universality if our model. We could have certainly consid-
ered all the interactions on equal footing, minimizing the
energy with respect to φ in the same way as it has been done
in Eq. (4). However, such an approach would be physically
incorrect. The double-layer repulsion is supposed to unroll
the scrolls. This is how we want to probe the stability of the
rolled-up structure. Upon unrolling the scroll, the scroll’s
geometry inevitably changes and can no longer be described
by the Archimedean spiral invalidating our main assumption.
Instead of guessing the shape evolution upon unrolling, we
follow the thermodynamic approach and compare the initial
(rolled-up state) and final (unrolled state) energies, figuring
out which is lower.
To do that, we introduce the enthalpy difference

between rolled-up and unrolled conformation states:
ΔH¼ΔUþΔW, where the internal energy difference is
given by ΔU ¼ Eb, and the work ΔW done upon the
unrolling process can be written in terms of the interlayer
pressure pðdÞ [42] integrated over the interlayer separation
as [47]

ΔW ¼ −Ao

Z
∞

d
pðd ¼ xÞdx ð8Þ

¼ −Aoϵ0ϵκζ
2½1 − tanh ðκd=2Þ�; ð9Þ

where ϵ0 is the dielectric constant, ϵ ≈ 80 is the
dielectric permittivity for water solutions, and κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2ρion=ðϵ0ϵkBTÞ

p
is the reciprocal of the Debye length

for a 1∶1 electrolyte with ρion being the ion density. The
latter can be roughly estimated using pH and Avogadro
number NA as ρion ¼ NA10

−pH dm−3 for pH < 7 and
ρion ¼ NA10

pH−14 dm−3 for pH > 7. The interlayer dis-
joining force per unit area pðdÞ can also be seen as an
osmotic pressure [35]. Scroll stability is determined by the
sign of ΔH: the scrolls are stable if ΔH > 0 (i.e., the

FIG. 2. Scrolls’ binding energy (Eb) vs Hamaker constant (H)
and bending stiffness (D). The scrolls are unstable in the blueish
region, where Eb is of the order of kBT at room temperature T.
The figure demonstrates that the values of both the Hamaker
constant and the bending stiffness must not be smaller than kBT
to stabilize the scrolls.
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unrolling process requires an external energy source) and
unstable otherwise.
To investigate the sample-size effect, we set Ao ∼ L2 in

Eq. (9) and express d through L using Eqs. (2) and (6) as
2πd ∼ L=ð1þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24πD=H

p Þ. Here, we have assumed
φ0;1 ≫ 1. We could also express L in terms of d but, in
contrast to what we have done in Eq. (4), there is no way to
get rid of both L and d. Also note that the electrostatic
double-layer interactions are characterized by two effective
lengths: 1=κ and e=ϵ0ϵζ. The two-length dependence
substantially expands the parameter space. In particular,
the scroll stability can now be controlled externally through
pH-dependent κ and ζ.
The interlayer distance d is proportional to L and

depends on the ratio D=H. In the limit D=H → ∞ at a
given L, the interlayer distance formally vanishes (d → 0).
In the high-stiffness regime (D=H ≫ 1), the scroll shape
resembles a rolled-up sheet of high-density office A4 paper
without crumples. The interlayer attraction is negligible for
the macroscopic paper sheets (one has to hold a paper roll
gently to keep it intact), and the elastic force presses the
layers together, resulting in a vanishing interlayer spacing.
Hence, the higher bending stiffness leads to a smaller
interlayer distance. In the case D=H ∼ 1, one can imagine
the scroll shape as a rolled-up sheet of cigarette paper,
which is much softer than office paper and forms looser
scrolls. The scrolls collapse in the limitD=H ≪ 1, in which
the model does not apply.
Figure 3 shows that the scrolls, once formed, are always

stable at ζ → 0, as there is no surface charge and hence no
interlayer repulsion. Away from the ζ ¼ 0 axis, the scroll
stability is determined by the Debye length. The work ΔW
vanishes at very low and very high ion densities (κ → 0
and κ → ∞), always making ΔH positive at those limits.

That is the reason why the diagram demonstrates stability
regions at the neutral conditions (pH7) as well as in the
strongly basic and strongly acidic solutions; see Fig. 3. The
region of stability in pH-neutral solutions may, however,
shrink to a narrow gap if the repulsion force is strong
(large L). This is what one can see in Fig. 3 for L ¼ 10 μm.
In the regions of very high ion concentrations (pH1 or
pH13), the Debye length can become shorter than the
interlayer distance, and neighboring layers do not repel
each other because of a strong screening. It is probably not
a technologically relevant regime because of the question-
able material stability in such a harsh environment, but it is
instructive to consider this case for the sake of complete-
ness. After all, the Debye length can also be adjusted by
adding a salt without making the solution too acidic or
too basic.
Stability of fibers.—There is certainly a more conven-

tional way to increase the stability of scrolls: entwining
several scrolls at once and hence forming a “fiber.” At the
first sight, the fibers are more difficult to roll up and keep
stable because the bending stiffness of a stack increases
with the number of layers N. However, the interlayer
attraction also gets stronger with an increasing N because
the interlayer distance is then reduced by a factor of 1=N.
To quantify this effect, we consider the flakes being of the
same size and write the following equation for each scroll
component:

rnðφÞ¼
φnþφ

2π
d; φn¼ðn−1Þ2π

N
; 1≤n≤N: ð10Þ

Here, n is the scroll index, and the particular form of φn is
chosen to keep the layers equidistant; see Fig. 4. Following
the same recipe as before, we can derive the total fiber
energy given by Eq. (4) with D → ND and H → N2H, i.e.,
the interlayer attraction increases faster with N than does

FIG. 3. Phase diagram demonstrating the stability of scrolls
immersed in an aqueous solution depending on the solution pH
and ζ potential of functionalized graphene. The white regions
correspond to ΔH > 0 (the scrolls are stable for any size
considered), and the color fillings indicate the instability regions
for a given linear size L shown in the legend.

FIG. 4. Schematic image of a fiber made of three scrolls with
N ¼ 3 in Eq. (10). The size L can be calculated using the upper
line of Eq. (2), with rðφÞ given by Eq. (10). The lower limit (φ1)
is adjusted to keep L the same for all three scrolls. If the fiber
components are made of the same material, then the interlayer
distance is reduced by the factor 1=N, making the fibers more
stable than the individual scrolls. The dashed curves demonstrate
the shift φn from the coordinate origin of each scroll; see Eq. (10).
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the effective bending stiffness. As a consequence, the fiber
stability improves with the number of scroll components.
Outlook.—Because of its intrinsic universality, our

model could be used as a compass for navigating in the
space of external parameters determining the behavior of
2D scrolls. Advanced functionalization of 2D materials can
expand the parameter space even further, offering interest-
ing regimes to explore. One of the most obvious pathways
is to functionalize the top and bottom of a pristine 2D flake
by different chemicals [15]. This would result in a finite
difference between ζ potentials on the inner and outer
surfaces of the layer forming a scroll. The difference
qualitatively changes the electrostatic double-layer inter-
actions, allowing for the particular parameter combinations
when the double-layer electrostatic repulsion switches to
attraction [47]. This effect may either shrink the instability
regions in the parameter space or even lead to scroll
collapse if the potential difference is too high. The
functionalization is therefore a powerful tool to change
the geometry of 2D materials, one that should be used with
care, however.
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