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Sand dunes, which arise spontaneously due to the dynamical interplay between a sedimentary interface
and a fluid flow, are one of the most famous examples of emergence in a geological system. The large scale
organization of a dune field is believed to be controlled by pairwise (either remote or direct) dune-dune
interactions. Recent studies have shown that remote long-range feedback is closely related to the turbulent
wake structure forming downstream of a dune. Here, we study the stability of an idealized two-dune system
arising as a consequence of such remote, wake-induced interactions. The system is realized in a subaqueous
quasi-2D laboratory experiment and the results are compared with a qualitative dynamical systems model.
Despite its simplicity, the system exhibits rich dynamical behavior. In particular, we show that, depending
on the parameter regime, the dune-dune feedback can either stabilize or destabilize the symmetric dune
configuration, and we demonstrate the existence of an asymmetric attracting state coupling dunes of
different sizes.
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Sand dunes often form vast collectives known as dune
fields [1–3], which continually evolve due to erosion and
deposition induced by the flow of the overlaying fluid [4–8].
Themigration of terrestrial dunes is related to desertification
and poses a threat to human-made infrastructure, both in
deserts and underwater [5,9,10]. By studying extraterrestrial
dunes we can also learn about the weather conditions on
other planets [11,12]. Dune field modeling, therefore, is a
pressing need, but it is also challenging as full resolution of
all the relevant fluid dynamics is practically impossible with
the current computational resources. Consequently, numeri-
cal studies typically rely on empirical parametrizations. The
most radical reducedmodels abstract a sparse dune field as a
population of discrete agents interactingwith their surround-
ings. Previous models of this kind focused on collisional
interactions leading to billiardlike dynamics [1,3,13–20].
However, recent experimental and observational studies
revealed that dunes can also interact over sizable distances
without necessarily directly colliding [21–25]. Therefore,
while the agent-based models still remain attractive, their
parametrization stands in need for a revision.
In this Letter, we study the stability of an experimentally

realized quasi-2D two-dune system [26–29], which can be
regarded as a paradigm of remote dune-dune interactions.
In our experiments we use a narrow annular flume (see
Fig. 1) which gives the unique opportunity to impose
periodic boundary conditions in a laboratory experiment
[24] (for technical details see Supplemental Material [30]).
The closest natural analog of our experimental dunes are

spanwise-invariant transverse dunes, but they can also be
interpreted as streamwise transects of more complex bed-
forms [33]. Quasi-2D bedforms have received significant
attention in the theoretical literature, which allows us to
place our experimental results in the context of well-
established theories [33,34].
For quasi-2D dunes confined in a channel of width W,

the changes in sediment topography hðx; tÞ can be related
to the sand flux qðx; tÞ ½MT−1� through the Exner equation
[4,34]

∂h
∂t þ

1

ρ

∂q
∂x ¼ 0; ð1Þ

where

ρ ¼ ρpηW ð2Þ

is the effective density of the quasi-2D bedform, ρp is the
actual sediment density, and η is the bed packing fraction.
As a corollary, a steady-shape migrating dune moves at rate

c ¼ qc − qi

ρhc
; ð3Þ

where qi is the upstream sediment influx, qc is the sediment
flux at dune’s crest, and hc is the crest height [4,33,34]. If
the dune’s cross section remains self-similar in shape, we
can also assume
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hc ¼
ffiffiffiffiffiffiffi

km
ρ

s

; ð4Þ

where m is the mass of the dune and k is a proportionality
constant.
We shall now specialize to the problem of a two-dune

system in a periodic domain. In a reduced model, this
system is described by four variables (x1, x2, m1, m2) [35],
but we can reduce its dimensionality even further. First, due
to rotational symmetry of the system, we will only focus on
the relative dune separation

Δx ¼ x2 − x1: ð5Þ

Second, we will assume that the interdune particle transit
times are instantaneous, so the respective influxes and
outfluxes are equal and

m2 ¼ M −m1; ð6Þ

where M is the total mass of sediment in the flume. Thus,
the state of our system is fully described by separation Δx
and the mass m ¼ m1 coupled by the following equations:

dðΔxÞ
dt

¼ qc2 − qo1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kρðM −mÞp −
qc1 − qo2

ffiffiffiffiffiffiffiffiffi

kρm
p ; ð7Þ

dm
dt

¼ qo2 − qo1: ð8Þ

In order to parametrize the remote dune-dune interactions,
we will assume that the respective fluxes are modulated by
the upstream conditions, i.e.,

qc1 ¼ q0f1þ fc½2πR − Δx; ðM −mÞ=ρ�g;
qo1 ¼ ϵq0f1þ fo½2πR − Δx; ðM −mÞ=ρ�g;
qc2 ¼ q0½1þ fcðΔx;m=ρÞ�;
qo2 ¼ ϵq0½1þ foðΔx;m=ρÞ�: ð9Þ

Parameter ϵ is the “sand trapping efficiency” [35,36],
quantifying how much of the sand swept away from one
dune’s crest is trapped by the flow recirculation in the lee
[37–39]. Lacking exact experimental measurements, we
shall refrain from suggesting any particular form for the
interaction functions fc and fo. Nevertheless, based on
previous experiments [24] we can postulate three proper-
ties: (1) fc; fo ≥ 0, as the turbulent fluctuations generi-
cally enhance sediment flux; (2) ½ð∂fcÞ=ð∂y1Þ�ðy1; y2Þ;
½ð∂foÞ=ð∂y1Þ�ðy1; y2Þ ≤ 0, as feedback is expected to decay
away from the upstream dune; (3) ½ð∂fcÞ=ð∂y2Þ�ðy1; y2Þ;
½ð∂foÞ=ð∂y2Þ�ðy1; y2Þ ≥ 0, as feedback is expected to be
stronger for larger obstacles.

Expressions (9) provide a closure for the system (7) and
(8). For mathematical convenience, we shall now replace its
dimensional variables with nondimensional

Δθ ¼ Δx=R; μ ¼ m=M; τ ¼ t
ΩtotRρd

M
; ð10Þ

where d is the mean particle diameter and ΩtotR ¼
jΩp − ΩtjR provides the velocity scale [cf. Fig. 1(a)].
Note that ðΔθ; μÞ ∈ ½0; 2πÞ × ½0; 1� and, due to periodic

boundary conditions, the system possesses a symmetric
fixed point S ¼ ðΔθ ¼ π; μ ¼ 1=2Þ. Its linear stability
properties are (naturally) controlled by the eigenvalues
of the Jacobian matrix J, but in 2D they can be inferred
from the values of the trace and determinant of J, without
detailed calculation of the eigenvalues themselves. In our
system,

TrJ ¼ a0 þ a1ϵ; ð11Þ

and

DetJ ¼ b1ϵþ b2ϵ2; ð12Þ

where a0, b2 < 0 and b1 > 0 (see Supplemental Material
[30]). For fixed ai and bi, Eqs. (11) and (12) parametrically
define a parabola in the trace-determinant plane. Thus, as ϵ
increases, we expect the fixed point to change its linear
character. In particular, for ϵ ≪ 1, S is a stable node and in

(a)

(b)

FIG. 1. (a) Experimental setup. Annular channel of outer radius
R and a working section of width W, filled with water up to
Hw ¼ 45 cm. The dominant flow, induced by paddle motion, is
from the blue (upstream) dune to the red (downstream) dune.
Paddle tip positionHp, as well as the table rotation rateΩt and the
paddle rotation rate Ωp vary between experiments (cf. Table I).
(b) Quasi-2D two-dune problem with dunes of masses
m1 ¼ m,m2 ¼ M −m and crests of height hc1;2, located at x1;2.
The evolution of the system can be related to respective (sedi-
ment) crest fluxes qc1;2, influxes q

i
1;2, and outfluxes qo1;2.
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the limit ϵ → ∞, it becomes a saddle. In the intermediate
regime, depending on the exact values of ai and bi, there is
also a possibility of both damped and amplified oscillatory
solutions (Fig. 2).
This simple analysis can be used to explain our exper-

imental results, which show that the stability properties of S
change as we vary the flow parameters. The relationship
between the flow conditions and ϵ can be understood in
terms of the turbulence intensity I. We should emphasise,
however, that due to experimental limitations we cannot
measure either I or ϵ, so our arguments remain purely
qualitative. To begin with, recall that the sand trapping
efficiency ϵ can be interpreted as a ratio of fluxes
ϵ ∼ qo=qc. As previously noted, qo can be increased by
the turbulent gusts, which allow single sand particles to
bypass the recirculation region [24,40–42]. Therefore, it is
plausible that qo, and therefore ϵ increases as I increases.
Indeed, even though the turbulent fluctuations can increase
qc as well, qc does not critically rely on these fluctuations in
theway the remote transport to the other dune (and hence qo)
does. As far as the experiment is concerned, I can be
increased in at least two ways. First, it can be increased by
increasing the net driving rotation rateΩtot ¼ jΩp − Ωtj [i.e.,
the differential angular speed between the paddle and the
turntable, see Fig. 1(a)], which impacts the channel-based

Reynolds number. Second, it can be increased by reducing
Hp, which is the distance between the channel’s floor and
lower tip of the paddle which sheds intense turbulent
structures. If Hp is large, most of the eddies dissipate before
they reach the floor, but if Hp is small, they impinge on the
surface of a dune with more intensity. These two numbers
(Ωtot andHp) are the only flow parameters which vary across
the six experiments presented in this Letter and which are
summarized in Table I. The experiments could last up to
80 h, so for technical reasons they had to be paused several
times. However, through independent validation experi-
ments, we are confident that stopping and restarting an
experiment has no significant dynamical effect after a spin-
up time of the order of 60 s.
Experiments 1 and 2 [Fig. 3(d)] were conducted under

the relatively quiescent, but still definitely turbulent
(Redune ∼ 104), flow conditions, with Hp ¼ 38.5 cm, so
that the blade protrudes above the free surface. Experiment
1 corresponds to a pure Δθ perturbation and experiment 2
started from a μ perturbation away from the symmetric
fixed point S. In both cases, the system eventually con-
verges to S. Indeed, even though we cannot measure dune
mass at all times without disrupting the experiment, it has
been verified that the masses of the two dunes are virtually
equal at the end of the experiment. Based on the character
of theΔθ time evolution, we conclude that under these flow
conditions S behaves as a stable node, corresponding to
the dynamical regime ϵ ≪ 1. The timescale separation
ðf½dμ=dτ�=½dðΔθÞ=dτ�g ¼ OðϵÞÞ is further corroborated
by the slow-fast characteristics apparent in experiment 2.
Here, we observe quick convergence toward the slow
manifold (with f½dðΔθÞ�=½dτ�g ≈ 0) and a slow mass
rearrangement.
As demonstrated in Fig. 3(e), the dynamics is qualita-

tively different when the paddle is lowered down further.
This time, we observe manifest oscillations around S. Thus,
at a linear level S acts as a focus (most likely stable), which
would be consistent with intermediate values of ϵ.
Nevertheless, at the nonlinear level, the system exhibits
very interesting excitable features. Indeed, experiment 4
demonstrates that the oscillations can be also spontane-
ously induced by the intrinsic system noise originating
from turbulence and flume imperfections.
Finally, under the most turbulent conditions [Fig. 3(f)], S

becomes unstable. Here, the experiment was initiated
exactly at S, but the system quickly moved away from
the symmetric configuration and converged to an asym-
metric attractor A ≈ ðπ=2; 4=11Þ. The instability of S agrees
with our linear stability analysis in the regime ϵ ¼ Oð1Þ.
Nevertheless, this calculation clearly cannot explain the
existence of the asymmetric attractor A.
The nature of the asymmetric attractor A can be under-

stood through consideration of the schematic shown in
Fig. 4. So far, our analysis has been based upon the implicit
assumption that the domain length is small enough, so that

FIG. 2. Trace-determinant plane. Shadings represent the di-
mension of the stable manifold Es and the hashed region
corresponds to oscillatory solutions. All else being fixed, as
the sand-trapping efficiency ϵ increases we trace a parabola.
Hence, one possible bifurcation scenario, depicted by the solid
black line, is stable node ðaÞ → stable focus ðbÞ → stable node →
saddle (c).

TABLE I. Experiments. Flow boundary conditions as well as
the initial condition for the six experiments presented in this
Letter. The counterrotation ratio jΩp=Ωtj is tuned empirically to
ensure a quasi-2D profile of the sedimentary bed [43].

Experi-
ment Hp (cm) Ωtot (rpm) Ωt (rpm) Ωp (rpm) Δθð0Þ μð0Þ
1 38.5 13.5 −5.10 8.40 π=4 1=2
2 38.5 13.5 −5.10 8.40 π 4=11
3 34 13.5 −5.40 8.10 π=4 1=2
4 34 13.5 −5.40 8.10 π 4=11
5 24 15.5 −6.30 9.20 π 1=2
6 24 13.5 −5.85 7.65 41π=45 10.5=22
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the dune-dune feedback is bidirectional. This assumption is
manifestly true for the symmetric fixed point S, but it may
not be true for all the configurations. In particular, for
sufficiently small μ, there may be a range of dune
separations Δθ where the dunes are effectively decoupled
(shown in white in Fig. 4). If that is the case, ½ðdμÞ=ðdτÞ�¼0
and the migration rate depends only on the dune size, so
that f½dðΔθÞ�=½dτ�g < 0 for μ < 1

2
and f½dðΔθÞ�=ðdτÞg>0

for μ > 1
2
. On the other hand, in the double limit Δθ → 0,

μ→1 (or symmetricallyΔθ→2π, μ→0), which corresponds
to a small upstream dune “chasing” a big downstream dune,
we expect a unidirectional feedback (shaded light gray in
Fig. 4). If the small dune imposes sufficiently strong

repulsion to prevent a collision, over a long time scale,
the bigger dune is drained of mass, so the system is
attracted toward the two-sided interaction region (shaded
dark gray in Fig. 4). Thus, by considering a bounding
trajectory starting in one of the one-sided interaction
regions (red in Fig. 4), we conclude that the instability
of S implies the existence of a forward-invariant region A,
which by the Poincaré-Bendixson theorem contains a
simple attractor [44]. Nevertheless, unless the details of

(a)

(d) (e) (f)

(b) (c)

FIG. 3. Linear stability of the symmetric fixed point S. The top panels show illustrative theoretically predicted phase space diagrams
for (a) a stable node, (b) a stable focus, (c) a saddle. The bottom panels show corresponding experimentally measured ΔθðτÞ. (d) Under
quiescent flow conditions S behaves as a stable node. The time course in magenta corresponds to a pure Δθ perturbation and the time
course in green was initialized with a pure μ perturbation. (e) Under intermediately turbulent conditions the dynamics exhibits clear
oscillatory features. (f) When the flow is sufficiently turbulent, the system diverges from the symmetric fixed point S and moves toward
asymmetric attractor A.

FIG. 4. Asymmetric attractor. Schematic of the phase space
explaining the physical nature of the asymmetric attractor A
indicating distinct regions of one-sided, two-sided, or no inter-
action. The red line corresponds to a thought experiment
trajectory, which can be used to infer the existence of an attracting
forward-invariant region.

(a)

(b) (c)

FIG. 5. Transition. (a) Time course ΔθðτÞ of experiment 6
starting from a small finite-size perturbation of S, which is
nonlinearly unstable. (b) Differential speed of individual dunes
for the same experiment. (c) Migration speed of the leading dune
[cf. Fig. 1(b)]. Different colors denote different time periods.
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the slow manifold are resolved, it is not guaranteed that A
possesses a linearly stable fixed point. Indeed, we observe
the dynamics around A is rather noisy [Figs. 3(f) and 5(a)].
These large amplitude fluctuations may be ascribed to the
fact that the small dune is more sensitive to mass pertur-
bations, but they may also hint about the possible lack of a
single attracting fixed point.
Figure 5 shows an experiment near the bifurcation point

where S is marginally stable. It is important to appreciate
that, due to slow transients, it is difficult to determine if S is
indeed linearly stable at this particular point, but it is clear
that it certainly is unstable to finite-size (yet still relatively
small) perturbations. The experiment starts with a small
perturbation, approximately in the direction of the slow
manifold, and it first moves toward a metastable inter-
mediate state I with Δθ ≈ 0.8π. It is plausibly related to
some relatively short-lived (in parameter space) fixed point
which is born when S looses stability. Nevertheless, the
system eventually drifts away from I and converges to the
asymmetric state A, where it remains for the last 350
nondimensional time units, i.e., about 40 h, of the experi-
ment. Figure 5(b) shows the difference in the migration rate
between the two dunes throughout the experiment. It is
important to realize that the differential velocity is in fact
rather small, in that the migration rates of the two dunes
agree to at least two significant figures. Nevertheless, the
small excess of speed of the upstream dune over time
accumulates to a significant change in Δθ. Figure 5(c)
shows also that the equilibrium migration rate is faster in A
than in S, which agrees with the expectation that the
migration rate should be dictated by the smallest dune in
the system.
Our experimental setup clearly lacks the complexity of

any natural dune field, but the agent-based framework is
sufficiently general to draw a robust analogy between our
experiments and natural dunes. Thus, we would argue that
these results form an essential first step toward under-
standing the role of remote dune-dune interactions by
demonstrating how such interactions can qualitatively
change the longtime coupled dynamics through a remote
sand transport feedback. As we have seen, this feedback
can have both stabilizing and destabilizing effects. Of
particular interest is also the evidence of the existence of
an asymmetric attracting state, where dunes of different
sizes (and different downstream separations) couple in a
balanced fashion over very long times. The next step is to
consider the implications of this feedback for a longer train
of dunes and the 3D phenomena, such as fragmentation
[21,25,45,46] or calving [18].
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