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Multijet rates at hadron colliders provide a unique possibility for probing quantum chromodynamics
(QCD), the theory of strong interactions. By comparing theory predictions with collider data, one can
directly test perturbative QCD, extract fundamental parameters like the strong coupling αs, and search for
physics beyond the standard model. In this work we calculate, for the first time, the next-to-next-to-leading
order (NNLO) QCD corrections to typical three-jet observables and to differential three-to-two jet ratios.
The calculation is complete apart from the three-jet double virtual contributions which are included in the
leading-color approximation. We demonstrate that the inclusion of the NNLO corrections significantly
reduces the dependence of those observables on the factorization and renormalization scales. Besides its
phenomenological value, this proof-of-principle computation represents a milestone in perturbative QCD.
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Introduction.—The production of highly energetic
sprays of particles, also known as jets, is a dominant
process at hadron colliders. At high energies, where
perturbation theory is expected to hold, this process offers
the possibility for studying QCD in great detail. The
theory-data comparison of differential multijet rates pro-
vides essential information about perturbative QCD and
the modeling of jet production. The precision of these
predictions is typically limited by their dependence on
unphysical parameters—such as the renormalization and
factorization scales—but it can be systematically increased
by including higher-order corrections.
Three-jet production at the Large Hadron Collider (LHC)

has been studied in great detail by experimental collabo-
rations, see for example Refs. [1–6]. Typical observables
are jet transverse momenta, angular correlations and, more
generally, event-shape observables. A particular type of
observable suited for perturbative QCD is the ratio R3=2 of
three-to-two jet rates [7]. These ratios are directly sensitive
to parton splittings and are, therefore, proportional to the
strong coupling constant αs. This provides an opportunity
for measuring the value of αs at the LHC. Cross section
ratios have the additional advantage that some systematic
uncertainties of experimental and theoretical nature cancel

out. A prime example is the dependence on parton
distribution functions (PDFs).
There is extensive literature on theoretical predictions for

multijet production through next-to-leading order (NLO) in
perturbative QCD [8–13], including NLO electroweak
corrections [14–16]. NLO computations have also been
matched to parton showers [17,18] and are generally
present in multipurpose event generators [19–21].
Higher-order predictions for two-jet and single-inclusive
jet production have seen extensive development in the past
decade and are implemented through next-to-next-to-lead-
ing order (NNLO) in QCD [22–25]. The feasibility of
NNLO QCD predictions for higher jet multiplicity is
limited by the availability of two-loop virtual amplitudes
and by the efficient treatment of real radiation contribu-
tions. The three-jet two-loop amplitudes have recently been
made public in the leading-color approximation [26,27],
leaving the real radiation as the last obstacle to predictions
accurate at second order in αS.
The aim of this Letter is twofold. First, it presents NNLO

QCD predictions for the production of three jets and R3=2

ratios at the LHC at 13 TeV. Second, it demonstrates the
technical ability to treat the NNLO real radiation contri-
butions for processes with five colored partons at the Born
level. The completion of the second order corrections to
three jet production is a milestone in perturbative QCD
computations since, judging by its infrared structure, it is
among the most complicated two-to-three processes at
the LHC.
This Letter is organized as follows: in the section

“Calculation details” we discuss the technical details of
our computation. The section “Results” contains the
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phenomenological results and their analysis. We conclude
with a summary and outlook on future applications in the
section “Conclusions.”
Calculation details.—The computation has been per-

formed within the sector-improved residue subtraction
scheme formalism [28,29] which has already been success-
fully applied to single inclusive jet production [24] and
many other hadron collider processes, see Refs. [30–32].
We work in five-flavor massless QCD without the top
quark. Tree-level matrix elements have been taken from the
AvH library [33,34] while all one-loop matrix elements
have been implemented with the OpenLoops library [35].
The double virtual matrix elements are not yet available
beyond the leading-color approximation. For this reason we
approximate the finite two-loop contribution

Rð2Þðμ2RÞ ¼ 2ℜ½M†ð0ÞF ð2Þ�ðμ2RÞ þ jF ð1Þj2ðμ2RÞ

≡Rð2Þðs12Þ þ
X4

i¼1

ci lni
�
μ2R
s12

�
; ð1Þ

where s12 ¼ ðp1 þ p2Þ2 the invariant mass of the incoming
partons, in the following way:

Rð2Þðs12Þ ≈Rð2Þlcðs12Þ; ð2Þ

where Rð2Þlcðs12Þ denotes its leading-color approximation.
It is taken from the C++ implementation provided in
Ref. [27].
Equation (2) above is the only approximation made in

the present computation. We have checked that the overall
contribution of Rð2Þlcðs12Þ is about Oð2%Þ and we expect
the missing pure virtual contributions beyond the leading-
color approximations to be further suppressed.
We consider production of two and three jets at the LHC

with a center of mass energy of 13 TeV with jet require-
ments adapted from experimental phase space definitions
like, for example, Ref. [6]. Jets are clustered using the anti-
kT algorithm [36] with a radius of R ¼ 0.4 and required to
have transverse momentum pTðjÞ of at least 60 GeV and
rapidity yðjÞ fulfilling jyðjÞj < 4.4. All jets passing this
requirement are sorted and labeled according to their pT
from largest to smallest. Among those jets we require the
two leading jets to fulfill pTðj1Þ þ pTðj2Þ > 250 GeV in
order to avoid large higher-order corrections in two-jet
production close to the phase space boundary. We denote
by dσn the differential cross section for at least n jets
fulfilling the above criteria. Its expansion in αS reads

dσn ¼ dσð0Þn þ dσð1Þn þ dσð2Þn þOαnþ3
S

dσLOn ¼ dσð0Þn ;

dσNLOn ¼ dσð0Þn þ dσð1Þn ;

dσNNLOn ¼ dσð0Þn þ dσð1Þn þ dσð2Þn : ð3Þ

We quantify the size of (N)NLO corrections with the
help of the following ratios of differential cross sections:

KNNLO ¼ dσNNLO

dσNLO
and KNLO ¼ dσNLO

dσLO
: ð4Þ

The PDF set NNPDF31_nnlo_as_0118 is used for all
perturbative orders. The renormalization μR and factoriza-
tion μF scales are set equal μR ¼ μF ¼ μ0. The central scale
μ0 is chosen as ĤT=n for n ¼ 1, 2, where

ĤT ¼
X

i∈partons
pT;i: ð5Þ

The sum in the above equation is over all final state partons,
irrespective of the jet requirements. Previous studies of
perturbative convergence in jet production support this
event-based dynamic scale [37,38]. Unless stated other-
wise, uncertainties from missing higher orders in pertur-
bation theory are estimated by variation of μF ¼ μR by a
factor of 2 around the central scale μ0.
The calculation of the three-jet production cross sections

is computationally and technically challenging. The main
bottlenecks are the double real radiation corrections and the
corresponding integrated subtraction terms, due to large
numerical cancellation between individual contributions.
The numerical evaluation of the complex double-
virtual amplitudes is fast due to the efficient representation
presented in [27].
Results.—We begin by discussing typical jet observables

at hadron colliders. In Fig. 1 we show differential cross
sections for three-jet production with respect to the trans-
verse momentum pTðjiÞ of the ith leading jet. In all
histograms the outer bins do not include over- or underflow
events.
The NNLO K factor of the pTðj1Þ distribution is not flat:

at small pTðj1Þ one observes negative NNLO corrections of
about −10%, while at large pTðj1Þ the corrections tend to
be small and positive. The change in scale dependence for
this observable when going from NLO to NNLO is also
dependent on pTðj1Þ. One observes a rather significant
reduction at large pTðj1Þ (from about 7% at NLO to about
2% at NNLO) while at small pTðj1Þ, where the K factor is
largest, the scale dependence slightly increases (from about
4% at NLO to about 5% at NNLO). Interestingly, the scale
dependence at NLO and NNLO behaves rather differently:
at NLO it steadily increases with pTðj1Þ while at NNLO it
decreases with pTðj1Þ. Throughout this work we define the
scale dependence as one half of the width of the scale
uncertainty band. This is relevant for cases where the scale
variation is asymmetric, as for example is the case of
pTðj1Þ at NLO.
The pTðj2Þ distribution has a similar pattern of NNLO

corrections: relative to NLO they are negative, about −20%
at low pTðj2Þ, and steadily increase towards larger pTðj2Þ
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values. At both NLO and NNLO the scale dependence of
pTðj2Þ is similar to that of pTðj1Þ. On the technical side, the
convergence of the numerical integration for the pTðj2Þ
spectrum has been significantly slower than for the other pT
observables, which results in increased Monte Carlo uncer-
tainty. To compensate for this, a larger bin size has been
used for pTðj2Þ. Independently of its slower numerical
convergence, the pTðj2Þ spectrum shows good perturbative
convergence. Such a behavior is in contrast to the two-jet
case where the subleading pT spectrum is known to get
large perturbative corrections due to the strict back-to-back
tree-level kinematics [38].
The pTðj3Þ distribution is well behaved: it has a flat K

factor and fairly symmetric uncertainty band at both NLO
and NNLO. The scale variation is almost independent of
pTðj3Þ, about the 5% at NNLO, which is only slightly
smaller than in the NLO case.
The fact that this observable shows such good conver-

gence and perturbative stability is somewhat remarkable.
Naively, one may suspect that the scale used here may not
perform very well for this distribution because the scale is
based on the kinematics of the full event which, in turn, is
dominated by the leading jet(s). Since this finding may be
of relevance for the extraction of the strong coupling
constant from three-jet events, it may be worth investigat-
ing this behavior in more detail. This is outside the scope of
the present work.

Next we discuss the observable HT , defined as

HT ¼
X

i∈jets
pTðjiÞ; ð6Þ

where the sum is over all jets that pass the jet requirements.
We show this observable in Fig. 2 for the two-jet process
and in Fig. 3 for the three-jet process. Both figures are
subdivided in two panels showing the same observable but
for a different central scale choice: the upper panels for
μ0 ¼ ĤT and the lower panels for μ0 ¼ ĤT=2. Turning to
the two-jet case we see that both the perturbative con-
vergence and the scale dependence improve if the central
scale choice is lowered. For μ0 ¼ ĤT the inclusion of the
NNLO QCD corrections does not reduce significantly the
scale dependence with respect to NLO and both bands
barely overlap. However, KNNLO ≈ 1.2 is much smaller
than KNLO ≈ 2 indicating the stabilization of higher-order
corrections beyond NNLO. For the production of three jets

FIG. 2. The observable HT in two-jet production for two
different central scale choices. Scale variation corresponds to
three-point variation. The colors are the same as in Fig. 1.

FIG. 3. As in Fig. 2 but for three-jet production.

FIG. 1. The three panels show the ith leading jet transverse
momentum pTðjiÞ for i ¼ 1, 2, 3 for the production of (at least)
three jets. LO (green), NLO (blue), and NNLO (red) are shown
for the central scale (solid line). Three-point scale variation is
shown as a colored band. The grey band corresponds to the
uncertainty from Monte Carlo integration.
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we find that the two central scale choices μ0 ¼ ĤT and
μ0 ¼ ĤT=2 produce comparable results, albeit μ0 ¼ ĤT=2
has smaller scale variation. The scale dependence is small
compared to the two-jet case and KNNLO is closer to one.
These findings indicate that a central scale of μ0 ¼ Ĥ=2
leads to slightly better perturbative convergence and, thus,
better approximates the actual energy scale relevant for this
observable. We have checked that even lower scales, like
μ0 ¼ ĤT=4, spoil perturbative convergence.
As a first application of the NNLO-accurate three-jet

rates computed in this work we consider ratios between
three-jet and two-jet rates. The ratios are defined as

R3=2ðX; μR; μFÞ ¼
dσ3ðμR; μFÞ=dX
dσ2ðμR; μFÞ=dX

; ð7Þ

where X is some observable of interest. The (N)NLO ratio
is defined in such a way that the numerator and denom-
inator on the right-hand side are evaluated at the matching
order. The scale dependence of the differential cross
sections is shown explicitly to emphasize that the scale
choices in the numerator and denominator are correlated.
In the upper two panels of Fig. 4 we show the ratio

R3=2(pTðj1Þ). The ratio changes drastically when going
from LO to NLO mostly due to the change in the two-jet
cross section. The NNLO correction stabilizes the ratio
and leads to a very small scale dependence. The KNNLO

factor slightly decreases for large momenta, however, it is
always fully contained within the NLO scale band. An
important observation is that the NNLO scale band is very
small in comparison to NLO, reducing it from about 10%
down to 3%.
Next we consider the lower two panels in Fig. 4, where

we show the ratio R3=2ðHTÞ for a central scale μ0 ¼ HT=2.
This observable behaves similarly to R3=2½pTðj1Þ� albeit
with a slightly larger scale dependence. The reduction in
the scale uncertainty when going from NLO to NNLO is of
particular importance since this observable is used exper-
imentally for measurements of αS [5]. The leading source
of perturbative uncertainty in this data-theory comparison
is the scale dependence. The PDF dependence, which is not
computed in this work, is expected to be reduced in
the ratio.
Jet rates are typically measured in slices of jet rapidity.

To demonstrate how our calculation performs in this
situation, we divide the phase space in slices of the rapidity
difference between the two leading jets

y� ¼ jyðj1Þ − yðj2Þj=2; ð8Þ

and define the ratio of the two- and three-jet rates as

R3=2ðHT; y�Þ ¼
d2σ3=dHT=dy�

d2σ2=dHT=dy�
: ð9Þ

The NNLO prediction for this cross section ratio can be
found in Fig. 5. The prediction is shown relative to the NLO
one. The NNLO correction is negative across the full
kinematic range and, overall, behaves very similarly to the
one for the rapidity-inclusive ratio R3=2ðHTÞ. This remains

FIG. 4. The top two panels show R3=2ðpTðj1ÞÞ (in absolute and
as ratio to NLO) and the bottom two panels R3=2ðHTÞ. The colors
are the same as in Fig. 1.

FIG. 5. The three panels show R3=2ðHT; y�Þ, in each panel a
different slice in y� as ratio to NLO. The colors are the same as
in Fig. 1.
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the case as y� increases, at least in the range of rapidities
considered here.
Conclusions.—In this work we present for the first time

NNLO-accurate predictions for three-jet rates at the LHC.
We compute differential distributions for typical jet
observables like HT and the transverse momentum of
the ith leading jet, i ¼ 1, 2, 3, as well as differential three-
to-two jet ratios. Scale dependence is the main source of
theoretical uncertainty for this process at NLO, and it gets
significantly reduced after the inclusion of the NNLO
QCD corrections. Notably, the three-to-two jet ratios
stabilize once the second-order QCD corrections are
accounted for.
A central goal of the present work is to demonstrate the

feasibility of three-jet hadron collider computations with
NNLO precision. With this proof-of-principle goal
attained, one can now turn one’s attention to the broad
landscape of phenomenological applications for three-jet
production at the LHC. Examples include studies of event
shapes [6,39,40], determination of the running of the strong
coupling constant αs through TeV scales, and resolving the
question of scale setting in multijet production. Another
major benefit from having NNLO-accurate predictions is
the reliability of the theory uncertainty estimates.
On the technical side, the enormous computational cost

of the present calculation (∼106 CPUh) makes it clear that
further refinements in the handling of real radiation con-
tributions to NNLO calculations are desirable.
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