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Within the framework of self-force theory, we compute the gravitational-wave energy flux through
second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent with
post-Newtonian calculations in the weak field, and they agree remarkably well with numerical-relativity
simulations of comparable-mass binaries in the strong field. We also find good agreement for binaries with
a spinning secondary or a slowly spinning primary. Our results are key for accurately modeling extreme-
mass-ratio inspirals and will be useful in modeling intermediate-mass-ratio systems.
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Introduction.—Advances in gravitational-wave (GW)
astronomy will come from the development of experimen-
tal apparatus, data analysis algorithms, and theoretical
waveform templates. For the inspiral and merger of
compact binaries, the latter necessitates solving the two-
body problem in general relativity. Over the decades,
various approaches have been developed to do so by
obtaining approximate solutions to the Einstein field
equations. Post-Newtonian (PN) theory applies in the weak
field, making it valid early in the inspiral, when the objects
are far apart [1]. Effective-one-body theory extends PN
theory’s domain of validity and allows for calibration with
strong-field data in the late inspiral, close to merger [2]. In
the strong field, no analytic approximations suffice, and
usually one must turn to numerical relativity (NR) simu-
lations [3,4]. Though these provide an exact result (modulo
numerical error), their high computational burden means
they are restricted to near-comparable-mass binaries and a
few tens to hundreds of GW cycles.
When the ratio of the mass of the smaller (secondary)

object to that of the primary is small, it is natural to turn to
the gravitational self-force (GSF) approach and black hole
perturbation theory (BHPT) [5,6]. Within this method, the
binary’s spacetime metric is expanded in powers of the
(small) mass ratio around that of the primary, larger object.
Traditionally, the GSF approach has been used to model
extreme-mass-ratio inspirals (EMRIs): binaries where a
compact object inspirals into a supermassive black hole
with a mass ratio of 1∶105 or smaller. These systems are
key sources for the future Laser Interferometer Space
Antenna, LISA [7].
In order to extract EMRI signals from the LISA data

stream, and to enable precision tests of general relativity
[8], GSF calculations must be carried through to second
order in the mass ratio [9]. The calculation of first-order

GW fluxes has been possible since the 1970s [10] and
has enabled the computation of adiabatic inspirals. Within
the last two decades, postadiabatic corrections have been
formulated and computed. These include first-order
conservative corrections to the dynamics [5,11,12], for-
mulations at second order [13–16], and a lone calculation
of a second-order quantity [17].
In this Letter, we report the first calculation of a key

physical observable that characterizes a binary’s postadia-
batic evolution: the flux of energy in GWs radiated to future
null infinity (hereafter referred to as “the flux”) including
all contributions through second order in the mass ratio
(2SF). We focus on nonspinning binaries, but also present
results for binaries where the components are spinning with
a small angular momentum.
We find that the 2SF flux agrees remarkably well with

NR simulations for near-comparable-mass binaries. This
agreement holds until a few cycles from merger, when the
slow-inspiral assumption in our calculation breaks down.
Figure 1 summarizes the results of these comparisons. It is
not completely unexpected that BHPT can be pushed
beyond its traditional domain of validity. For years there
has been mounting evidence that this is the case both in the
conservative sector [18–20] and via comparisons between
NR and first-order GSF waveforms [21,22]. Our work is
the first time the 2SF flux has been computed. By
comparison with NR, it strongly suggests that GSF results
can be used to model intermediate-mass-ratio inspirals
(IMRIs), as well as EMRIs.
We use geometrized units with G ¼ c ¼ 1. We denote

the masses of the binary components by m1 and m2 with
m1 ≥ m2. We also define the small mass ratio ϵ ¼ m2=m1,
large mass ratio q ¼ 1=ϵ, and symmetric mass ratio
ν ¼ m1m2=M2, where M ¼ m1 þm2. For (anti)aligned
spinning binaries, we define the dimensionless spin
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variables χi ¼ Si=m2
i , where i ¼ f1; 2g and the Si’s are the

components of the dimensionful spin vectors in the
direction of the orbital angular momentum.
Second-order self-force calculation.—Our calculation

implements the two-timescale formalism of Ref. [25].
Restricting our attention to quasicircular orbits with orbital
frequency Ω ¼ dϕp=dt, where ϕpðtÞ is the azimuthal angle
of the orbiting secondary, we write the binary’s metric as

gαβ þ
X∞

m¼−∞
½ϵh1;mαβ ðΩÞ þ ϵ2h2;mαβ ðΩÞ�e−imϕp þOðϵ3Þ; ð1Þ

where gαβ is the Schwarzschild metric of the primary. The
orbital frequency and the metric perturbation amplitudes
hn;mαβ ðΩÞ evolve slowly, on the radiation-reaction timescale,
according to Eq. (A4) in Ref. [25], whereas the phase ϕp

evolves rapidly, on the orbital timescale. These two time-
scales are disparate during the inspiral, only becoming
commensurate close to the innermost stable circular orbit
(ISCO), where the expansion breaks down.
In order to compute the amplitudes hn;mαβ , we substitute

Eq. (1) into the Einstein equation and solve order by order
in ϵ. The secondary is incorporated using an analytically
known puncture, which diverges on the secondary’s tra-
jectory but captures the dominant part of the physical, finite

metric in the secondary’s local neighborhood [15,26]
(equivalent to treating it as a point mass [27]). Working
in the Lorenz gauge and decomposing hn;mαβ onto a basis of
tensor spherical harmonics with modal indices lm, as in
Eq. (A3) of Ref. [25], we reduce the field equations to a set
of ordinary differential equations for the radial coefficients,
given explicitly in Eqs. (152) and (153) of Ref. [25], as well
as obtaining evolution equations for the mass and spin of
the primary [Eqs. (227) and (242) of Ref. [25] ]. These
equations can be solved for the lm modes of hn;mαβ at any
values of Ω without knowledge of ϕp, with the system’s
slow evolution accounted for through source terms propor-
tional to dΩ=dt in the second-order field equations.
We compute the source in the second-order field equa-

tions and derive boundary conditions using the techniques
developed in Refs. [28–30]. Key inputs for the source are
h1;mαβ , ∂Ωh

1;m
αβ , and the first-order GSF, all of which we

compute numerically [31–33]. With these in hand, we
numerically solve the radial field equations for each lm
mode of h2;mαβ on hyperboloidal slices [25] using the method
of variation of parameters [32,34].
Flux calculation.—To facilitate comparisons, we para-

metrize the NR and GSF fluxes in terms of quantities
that can be computed directly from the waveform [35].
We decompose the waveforms as hðtÞ ¼ hþ þ ih× ¼
r−1

P
lm hlm−2Ylmðθ;ϕÞ, where −2Ylm is a spin-weight

−2 spherical harmonic. We further decompose each mode
into an amplitude and a phase, hlmðtÞ ¼ AlmðtÞeiΦlmðtÞ,
where AlmðtÞ and ΦlmðtÞ are real functions. The flux is
F lmðtÞ ¼ ð1=16πÞj _hlmðtÞj2, and the frequency is defined as
ϖ ¼ _Φ2;2=2, where an overdot denotes d=dt. In the weak
field ϖ ≃ Ω, and for small mass ratios ϖ ¼ ΩþOðϵÞ. We
then define inverse orbital separations xðtÞ ¼ ðMΩÞ2=3 and
x̄ðtÞ ¼ ðMϖÞ2=3. It will be useful to define the Newtonian-
normalized flux F̂ lm ≡ F lm=FN

lm, where F
N
lm is the leading

term in the PN series for that mode; e.g., FN
22 ¼ 32x5ν2=5,

FN
33 ¼ 243x6ν2ð1 − ν2Þ, etc. [36].
In our GSF calculation, F lm is calculated from the lm

mode of ðϵh1;mαβ þ ϵ2h2;mαβ Þ at null infinity [37,38]; since F lm

only depends on dϕp=dt ¼ Ω, we can calculate F lmðϵ;ΩÞ
without knowing ϕpðtÞ. We write it as F SF;ϵ

lm ðϵ;ΩÞ ¼
ϵ2F SF;1ϵ

lm ðΩÞ þ ϵ3F SF;2ϵ
lm ðΩÞ þOðϵ4Þ. For comparable-

mass binaries, it is natural (and it is known to improve
BHPT’s accuracy) to express GSF results in terms of the
symmetric mass ratio, ν [18,22]. We hence write ðϵ;ΩÞ as
functions of ðν; xÞ and reexpand our flux as F SF

lmðν; xÞ ¼
ν2F SF;1

lm ðxÞ þ ν3F SF;2
lm ðxÞ þOðν4Þ. Finally, we convert

from x to x̄ (though we find this correction to be very
small for all ν and x we have considered).
Comparison with numerical relativity simulations for

nonspinning binaries.—With the above definitions, we
compute the flux from nonspinning NR simulations in

FIG. 1. The gravitational-wave flux (normalized by its leading
Newtonian behavior) for a nonspinning binary as a function of the
inverse orbital separation. Shown is the ðl; mÞ ¼ ð2; 2Þmode for a
mass-ratio 10∶1 binary computed using the PN, NR, and GSF
approaches. The solid, oscillating (blue) curve shows the NR flux
computed from SXS:BBH:1107 [23]. The numbers along the top
axis count the cycles before the peak amplitude in the NR
waveform. The solid (red) curve shows the result from our
second-order GSF (2SF) calculation. This agrees remarkably well
with the NR result until very close to merger, where the GSF
contributions diverge as the two-timescale approximation breaks
down. In the weak field, the second-order self-force data agrees
with the 3.5PN series [24], shown by the (orange) dash-dotted
curve. We also show the first-order self-force (1SF) result with
the (green) dashed curve. The vertical, dashed (gray) line marks
the location of the (geodesic) innermost stable circular orbit.

PHYSICAL REVIEW LETTERS 127, 151102 (2021)

151102-2



the public Simulating eXtreme Spacetimes (SXS) cata-
logue [23]. The SXS data is provided at different simulation
resolutions, and the waveform is computed using different
extrapolations of finite-radius data to null infinity [39]. We
find that the extrapolation order dominates the uncertainty
in the NR waveforms, and so in all our comparisons we use
the highest-resolution NR data and plot the flux computed
from the two highest extrapolation orders. Comparisons
between the NR, PN, and GSF fluxes for the (2,2) mode are
shown for q ¼ 10 and q ¼ 1 in Figs. 1 and 2, respectively.
Despite being a small-ϵ (large-q) expansion, we observe
that the 2SF flux agrees remarkably well with the NR flux
for the dominant (2,2) mode. For example, for q ¼ 10, the
relative disagreement between the 2SF and NR fluxes
remains below 1.9 × 10−3 until five cycles before the peak
amplitude of the waveform. Even for q ¼ 1, the relative
disagreement remains below 2.5 × 10−3 until five cycles
before the waveform peak. Closer to the ISCO, the
disagreement blows up as a consequence of our two-
timescale expansion breaking down.
For subdominant modes, the agreement between NR and

2SF worsens—see Fig. 3. This is not unexpected; by
examining the PN series (given in Appendix A of
Ref. [36]), we see that for the (2,2) mode, the third-order
[Oðν4Þ] corrections appear at (relative) 2PN order; whereas
for the (3,3) mode, the first Oðν4Þ term appears at (relative)
1PN order. For other modes, Oðν4Þ terms can appear in the
leading PN term. Interestingly, we find that the following
simple resummation provides a substantial improvement
in the accuracy of the GSF flux: F SF;resum

lm ðxÞ ¼
½F SF

lmðxÞ=FN
lmðxÞ þOðν2Þ�FN

lmðxÞ, where the fraction in
brackets is reexpanded through order ν. This resummed
series is constructed to have the property that
limx→0F̂

SF;resum
lm ðxÞ ¼ 1. Figure 3 shows that it works

remarkably well. Similar results are observed for smaller
values of q and/or more subdominant modes.
Furthermore, despite the weaker agreement between the

NR and nonresummed 2SF results for the subdominant
modes, the total flux (summed up to l ¼ 5) still compares
very well between the two methods, as the (2,2) mode
dominates the sum. For example, we find that for q ¼ 10,
the relative difference in the total flux remains below
3.2 × 10−3 up until five cycles before the waveform
amplitude peak.
Finally, we compare the GSF and NR results as a

function of ν in Fig. 4. Both the 1SF and NR flux scale
as Oðν2Þ, and after subtracting the 1SF from the NR flux,
we observe that the residual falls off as ν3. After further
subtracting the 2SF flux, we find that the residual scales as
ν4. This gives us confidence that our GSF result captures
the behavior of the full NR flux through Oðν3Þ. Our results
also suggest that by comparing 2SF and NR fluxes, it
may be possible to numerically extract the third-order
[Oðν4Þ] flux.
Flux from spinning binaries.—Our expansion in Eq. (1)

allows us to include a small, OðϵÞ spin on the primary,
which evolves due to absorption of GWs during the inspiral
but can take any (small) initial value. Furthermore, we can
also consistently add corrections due to a spinning secon-
dary, so long as its angular momentum per unit mass is of
OðϵÞ, as is the case for a compact secondary.
To facilitate comparisons between GSF and NR

fluxes with spins, we follow Ref. [36] and introduce
X1 ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p Þ=2 and X2 ¼ 1 − X1. With these, we

FIG. 2. The same as Fig. 1, but with q ¼ 1. Despite being a
small-ϵ (small-ν, large-q) expansion, the 2SF result agrees
remarkably well with the NR flux for this equal-mass binary.
The NR flux was computed from SXS:BBH:1132 [23].

FIG. 3. The same as Fig. 1, but for the ðl; mÞ ¼ ð3; 3Þmode. We
see that the 2SF flux does not agree as well with the NR result as
in the case of the (2,2) mode. The simple resummation of the 2SF
flux described in the main text results in a substantial improve-
ment in the comparison with the NR flux. The relative difference
between the NR and resummed 2SF flux up to five cycles before
the waveform peak is below 4.5 × 10−3, compared to 1.3 × 10−2

for the nonresummed case. The resummation gives similar
improvements for the other modes we have computed up to
l ¼ 5. The 1SF result is not visible on the scale of the plot.
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define ãi ¼ ai=M ¼ Xiχi and F SF;spin
lm ðx̄Þ ¼ F SF

lmðx̄Þ þP
2
i¼1 ãiF

spin;i
lm ðx̄Þ, where F spin;i

lm ðx̄Þ is the leading contri-
bution to the flux due to the spins (discussed below).
We first consider binaries with a spinning secondary

and a nonspinning primary. In perturbation theory, many

authors have computed F SF;spin;2
lm ðx̄Þ for circular orbits

[43–45]. Here we make use of the results of Ref. [44],
where the linear-in-spin flux is computed as a function of
the orbital frequency. As before, even for a small-q binary
and a rapidly rotating secondary, we find good agreement
with NR simulations—see Fig. 5.
We next consider a spinning primary with ã1 ∼ ϵ, putting

the spin in the perturbation h1;0αβ in Eq. (1). We find that the

FIG. 4. Comparison of NR and GSF fluxes at x̄ ¼ 1=9 for the
(2,2) mode (left panel) and (3,3) mode (right panel). At leading
order, both the NR flux (blue squares) and GSF flux (orange
circles) scale as ν2. After subtracting the 1SF flux from the NR
flux, we find that the residual follows the dashed (green) ν3 curve.
After further subtracting the 2SF fluxes, we expect the residual to
scale as ν4 (shown as a solid red curve). For the (2,2) mode, the
residual broadly follows the ν4 trend, but the comparison is
complicated by small oscillations in the NR waveform (likely
from residual eccentricity and/or center-of-mass motion in the
NR simulation [40,41]). For the (3,3) mode, the residual is less
subdominant and clearly follows the expected ν4 behavior.
The SXS datasets used in this comparison are listed in the
Supplemental Material [42].

FIG. 5. Flux comparison for a spinning secondary with
q ≃ 6.28. The primary has a very low spin, and the secondary
has a retrograde spin with χ2 ≃ −0.8. The NR flux is computed
from SXS:BBH:1436 [23]. The PN flux [36] is shown with the
dot-dashed (orange) curve. The 2SF flux without spinning flux
corrections is shown by the (green) triangles. After the spining
flux corrections are added, the 2SF result (red, upside-down
triangles) agrees well with the NR flux.

FIG. 6. The same as Fig. 5, but with a slowly spinning primary
with q ≃ 8. The primary is spinning with χ1 ≃ 0.12, and the
secondary has χ2 ≃ 0.11. The NR flux is computed from
SXS:BBH:1460 [23].

FIG. 7. The (Newtonian-normalized) second-order flux, F̂ SF;2,
vs the Oðν3Þ contributions to the PN series, F̂ PN;2, for the
ðl; mÞ ¼ ð2; 2Þ mode. The solid (blue) curve shows the Oðν3Þ
contribution to the 3.5PN flux, and the circles show our 2SF
result. We then subtract the leadingOðν3Þ PN term, 55x=21, from
both and get the (orange) dotted curve and the squares. After
subtracting all the PN terms through x2, we get the (green) dot-
dashed curve and the diamonds. Subtracting all the PN terms
through x3, we get the (red) dashed curve and the triangles.
Finally, after subtracting all the PN terms through x7=2—i.e., all
the known PN terms—the subdominant residual is shown with
(purple) upside-down triangles. The residual appears to approach
the x4 reference curve shown by the long-dashed (purple) line.
The gray shaded region shows the estimated error in our 2SF flux.
We see similar agreement for other modes.
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resulting correction to the flux agrees with the linear-in-a1
flux extracted from first-order calculations on a Kerr
background [46] to within 4.2 × 10−5 (relative). If we
add this contribution to the 2SF flux, we again find good
agreement with NR when the primary is slowly rotating—
see Fig. 6.
Comparison with post-Newtonian theory.—In the weak

field, we can cleanly compare our GSF flux results against
analytic PN expansions that can be determined from the
GWamplitudes [24,36,47,48]. Comparing the Oðν3Þ terms
in the PN series to F SF;2

lm ðxÞ, we find agreement with all
known terms through 3.5PN—see Fig. 7.
Conclusions.—For the first time, we have computed the

gravitational-wave energy flux to future null infinity for
compact binaries in quasicircular orbits, through second
order in the binary’s mass ratio. We find that the results
agree remarkably well with fluxes computed for compa-
rable-mass binaries via numerical relativity. It is well
known that second-order results are crucial for EMRI
science [9], and our results strongly suggest self-force
calculations will be effective in modeling IMRIs.
There are many directions in which the present work can

be extended. The most immediate is the computation of
the local self-force, with which we can evolve the orbital
phase (which did not enter into the flux) and compute the
associated waveform. The orbital phase might also be
computed using the flux presented here combined with
an appropriate energy-balance law, as in PN waveform
templates [49]. Once the metric perturbation [Eq. (1)] is
computed for nonoscillatory (m ¼ 0) modes, we can also
construct second-order conservative corrections to the
dynamics [50], providing gauge-invariant inputs for other
approaches to the relativistic two-body problem [51,52].
Our two-timescale expansion breaks down near the

ISCO. This can be overcome by matching the two-time-
scale expansion to a transition to plunge [53–55]. Further
attaching a postmerger approximation based on a quasi-
normal mode expansion will then provide complete
inspiral-merger-ringdown waveforms.
Astrophysically, we expect many supermassive black

holes in EMRI binaries to be rapidly spinning [56].
Unfortunately, our present calculation does not easily
extend to Kerr spacetime, as the equations for the
Lorenz-gauge metric perturbation have no known separable
form. Multiple parallel efforts are underway to address this
[57–59]. EMRIs are also expected to have considerable
eccentricity near merger [60], and work is underway to
develop 2SF techniques for these binaries [61].
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