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1Dipartimento di Fisica, Università di Roma “Tor Vergata” and INFN, Via della Ricerca Scientifica, 1-00133 Roma, Italy

2Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
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Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid
transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic
stress response in the form of a stress maximum referred to as “stress overshoot.” This ubiquitous
phenomenon is characterized by the coordinates of the maximum in terms of stress σM and strain γM that
both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings
using a continuum model that predicts two different regimes in the limit of low and high applied shear rates.
The corresponding exponents are directly linked to the steady-state rheology and are both associated with
the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for
predicting the transient response of soft glassy materials upon startup of shear from the local flow behavior
to the global rheological observables.

DOI: 10.1103/PhysRevLett.127.148003

Introduction.—From dense suspensions and gels to
metallic alloys and composites, numerous materials dis-
play a nonmonotonic stress response under external shear.
For a given applied shear rate _γ, the stress increases up to a
maximum σM reached at a strain γM before decreasing
towards its steady-state value, while the sample yields
(see Fig. 1). This sequence, also referred to as the “stress
overshoot,” is a complex process to model as it depends on
the applied shear rate as well as the details of the sample
microstructure through the sample age, its thermal and
shear history, etc. [1–6].
Soft glassy materials (SGMs) encompass soft amorphous

systems such as gels and glasses. These materials are
characterized by a yield stress σy below which the sample
responds as a solid, and above which it flows like a liquid
[4]. Under external shear, most SGMs display a stress
overshoot, which results from the rearrangement of the
sample microstructure. The stress peak is correlated to the
maximum structural anisotropy [8,9], while the subsequent
stress relaxation is dominated by nonaffine displacements,
and associated with either cage breaking and superdiffusive
motion of particles in the case of glasses [9–11], or strand
failure in the case of gels [12–14]. Concomitantly to the
stress relaxation, the sample may either flow homo-
geneously or show the formation of transient or steady-
state shear bands, or even fracture [15–19].
Despite such complexity, the amplitude σM of the stress

overshoot consistently increases as a power law of _γ, with
an exponent that varies from 0.1 to 0.5 as reported in

experiments on gels and repulsive glasses [7,19–22]. Stress
overshoots are well reproduced by various theoretical
approaches such as Brownian or molecular dynamics
simulations, micromechanical modeling, and mode cou-
pling theory, which have provided valuable insights on
the microscopic scenario associated with the overshoot
[19,23–26]. However, the functional form σMð_γÞ inferred
from computations is most often either logarithmic [27–30]
in contradiction with experimental results, or a power law
with an exponent 0.5 [12,13,31], which does not reflect the
broad range of exponents reported in the literature. A
noticeable exception is the seminal version of the fluidity
model, which yields a power-law scaling, with exponents
lower than 0.5 [20]. However, to date, there is no consistent
theoretical framework offering a rationale for the multi-
plicity of power-law exponents reported for stress over-
shoots in SGMs.
In this Letter, we tackle the case of “simple” yield stress

fluids (YSFs), a subclass of SGMs whose steady-state flow
is homogeneous and described by a Herschel-Bulkley
rheology [4]. We use a model first introduced in
Ref. [32] based on a fluidity parameter, and successfully
extended to capture the spatially resolved yielding scenario
of SGMs [33,34], to rationalize the effect of shear on the
coordinates (γM, σM) of the stress overshoot. We show that
the relevant variable to quantify the magnitude of the stress
overshoot is σM=σy − 1, and that this normalized parameter
displays two asymptotic power-law regimes as a function of
the applied shear rate, namely, a diffusive regime for low
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shear rates and an asymptotic scaling at large shear rates. In
both cases, the value of the exponent is set by the power-
law constitutive behavior in steady-state flow. Finally, our
approach allows us to account not only for the shear
dependence of the stress overshoots but also for the local
flow behavior upon startup of shear.
Fluidity model.—We consider a simple YSF whose

steady-state rheology follows the Herschel-Bulkley (HB)
model, which reads Σ ¼ 1þ _Γn in dimensionless units,
where Σ ¼ σ=σy is the shear stress normalized by the yield
stress, and _Γ ¼ _γ=ðσy=AÞ1=n is the shear rate normalized by
the natural frequency for the HB model, σ ¼ σy þ A_γn,
with n the HB exponent and A the consistency index. The
fluid is sheared between two walls, separated by a distance
L and its dynamics is encoded in the local dimensionless
fluidity fðyÞ, where y is the spatial coordinate along the
velocity gradient direction. As originally introduced in
Ref. [32], the fluidity is a dynamical coarse-graining
parameter related to the rate of plastic events. More
intuitively, one can consider the fluidity as the inverse of
the viscosity. We also define the rescaled time t̃≡ _γt, which
corresponds to the physical strain. As discussed in
Ref. [34], the fluid rheological response is well described
by the following equation for the fluidity:

∂f
∂ t̃ ¼ f½ξ2Δf þmf − f3=2�; ð1Þ

where ξ is the so-called cooperativity length and relates to
the extension of the region that is impacted by a neighbor-
ing plastic rearrangement [32,35–38], and m ¼ mðΣÞ with
m2 ¼ ðΣ − 1Þ1=n=Σ for Σ ≥ 1 and m ¼ 0 for Σ < 1. The
latter parameter m essentially conveys the information
about the underlying steady-state HB rheology, as f ¼
m2 corresponds to the stationary homogeneous solution of
Eq. (1). Moreover, we assume a simple plane shear flow
and that Σ is spatially homogeneous and only depends on t.

To model the response to an imposed shear rate _Γ, Eq. (1) is
coupled to the following evolution equation for the stress
based on a Maxwell model:

dΣ
dt̃

¼ G0

σy

�
1 −

hfiΣ
_Γ

�
; ð2Þ

where G0 is the elastic modulus, and hfi is the spatial
average of the fluidity, which is a function of time. We have
shown that this approach successfully captures the long-
time evolution of SGMs towards steady state [33,34].
Here we explore the short-time response of this model
during shear startup. As a generic case, we solve Eqs. (1)
and (2) with n ¼ 1=2, for fixed values of _Γ ranging between
10−4 and 102 with ξ=L ¼ 0.04 and assuming fðy; 0Þ ¼
10−4 ≪ 1 for the initial solidlike state and fð0; t̃Þ ¼
m2½Σðt̃Þ� and ∂yfðL; t̃Þ ¼ 0 for boundary conditions at
the two different walls. In this framework, we explore the
behavior of a simple YSF with respect to two parameters,
i.e., the imposed shear rate _Γ and the dimensionless
relaxation time τ ¼ σy=G0.
Theoretical scalings.—As illustrated in Fig. 1(b) for four

values of _Γ, the model predicts stress overshoots very
similar to those reported in experiments, e.g., on Carbopol
microgels [Fig. 1(a)]. More generally, extracting the stress
maximum ΣMð _ΓÞ and the corresponding strain ΓMð _ΓÞ ¼ t̃M
for values of τ spanning three orders of magnitude, we find
that ΣM grows faster with _Γ as τ decreases, i.e., when the
elastic modulus G0 increases relative to the yield stress σy
[Fig. 2(a)]. As a central result of this Letter, we show that
the entire dataset can be rescaled onto the master curve of
Fig. 2(b), which is composed of two power-law asymptotic
limits, namely ðΣM − 1Þ ∼ _Γ1=3 for _Γ ≪ 1, and ðΣM − 1Þ ∼
_Γ4=17 for _Γ ≫ 1. These two limits are justified analytically
in detail in the companion paper [39] and can be understood
qualitatively as the signature of two different dynamical
regimes for the nucleation and growth of a shear band of
size lbðt̃Þ at the moving wall. Indeed, upon shear startup,
the initial fluidity remains negligible and the stress Σðt̃Þ
grows roughly linearly up to Σðt̃MÞ ¼ ΣM where the lhs of
Eq. (2) must be zero, yielding _Γ ¼ hfiðt̃MÞΣM. Since the
fluidity hfi is dominated by the fluidity in the shear band, we
may approximate f with the value of m2ðt̃Þ for any applied
shear rate, yielding hfiðt̃Þ ∼ lbðt̃Þm2ðt̃Þ=L, with m2ðt̃Þ ∼
Σðt̃Þ ∼ Σðt̃Þ − 1 under the assumption that Σðt̃Þ ≫ 1.
In the limit of large shear rates, the fluidity grows from

the moving wall, triggering the formation of a fluidized
front. Scaling arguments show that the characteristic length
and time in the system are ξ=

ffiffiffiffi
m

p
and m−3, respectively

[34,39]. Hence, the shear band is expected to move with a
velocity dlb=dt̃ ∼m3ξ=

ffiffiffiffi
m

p ¼ ξm5=2ðt̃Þ. Using mðt̃Þ ∼
½Σðt̃Þ − 1�1=2 and integrating over time yields lbðt̃Þ∼
ξτ½ðt̃ − t̃1Þ=τ�9=4, where t̃1 is the time at which the stress

(a) (b)

FIG. 1. Phenomenology of the stress overshoot during startup
of shear. Stress responses (a) σ as a function of time t in
experiments performed on a 1% wt. Carbopol microgel (adapted
from Fig. 3 in Ref. [7]) under imposed shear rates _γ ¼ 10, 1, 0.1,
and 0.01 s−1 from left to right and (b) the present fluidity model
for _Γ ¼ 0.22, 2.9 × 10−2, 3.8 × 10−3, and 5.1 × 10−4 with a fixed
value of τ ¼ 1 (see text for details).
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equals the yield stress, i.e., Σðt̃1Þ ¼ 1. Finally, combining
the expression of mðt̃Þ and lbðt̃Þ at t̃ ¼ t̃M and using
ΣM − 1 ∼ t̃M − t̃1 leads to an expression for hfiðt̃MÞ and to
the following asymptotic scaling:

ΣM − 1 ∼
�

_Γ
ξτ

�4=17

for _Γ ≫ 1: ð3Þ

In the limit of low shear rates, the system reorganizes in
the vicinity of the moving wall without any propagating
front solution. Plastic activity rather occurs via diffusion
effects, which are peculiar to the fluidity equation [Eq. (1)],
so that the size of the shear band follows a diffusive growth
lbðt̃Þ ∼ ξmðt̃Þðt̃ − t̃1Þ1=2. Following the same steps as in the
high shear rate limit, we get

ΣM − 1 ∼
�

_Γ
ξτ1=2

�1=3

for _Γ ≪ 1: ð4Þ

As shown in the inset of Fig. 2(b), the strain ΓM is simply
proportional to ΣM so that the two asymptotic scalings also
hold for ΓM=Γ1 − 1. Finally, combining Eqs. (3) and (4),
we expect the transition between the two behaviors to
occur at _Γ⋆ ∼ ξτ−0.7 and Σ⋆

M − 1 ∼ τ−0.4. As shown in
Fig. 2(b), the rescaled data ðΣM − 1Þτ0.4 as function of
_Γτ0.7 indeed nicely collapse onto the predicted master curve
over the whole range of studied shear rates. As detailed in
the companion paper [39], the above approach can be
generalized to any value n of the HB exponent, leading to
scalings with exponents α ¼ 4n=ð9 − nÞ at large shear rates
and β ¼ 2n=3 at small shear rates instead of 4=17 and 1=3
in Eqs. (3) and (4), respectively.
Discussion.—Let us now compare our theoretical find-

ings against experimental data. We revisit the shear startup
experiments of Ref. [7] performed on Carbopol microgels
for concentrations ranging between 0.5% and 3% wt. in a
parallel-plate geometry connected to a stress-controlled
rheometer (see also the Supplemental Material [40] for
details, which includes Refs. [7,38,41]). Such a simple YSF
displays a stress overshoot upon shear startup [Fig. 1(a)].
As reported in Fig. 3(a), both the stress maximum σM and
the corresponding strain γM increase weakly with the
applied shear rate _γ. When considering σM=σy − 1, the
experimental data for the stress can be further rescaled into
a single master curve spanning more than two decades
[Fig. 3(b)], which displays two asymptotic scalings in
excellent agreement with the two exponents α and β
derived from the fluidity model for an arbitrary value of
n. Moreover, when multiplied by the elastic modulus G0,
the strain γM collapses onto a single affine law of σM with
the same prefactor as ΓM=τ in the theory [lower inset of
Fig. 3(b)]. Therefore, our theoretical approach nicely
captures the early stage response of this SGM to shear,
as well as its subsequent fluidization [34].
Beyond the quantitative prediction of the locus of the

stress maximum, our theoretical approach allows us to
compute the local velocity profiles during shear startup.
Figure 4 shows the velocity profiles at various times along
the stress response of the material predicted for _Γ ¼ 0.029
and τ ¼ 1. The velocity profile is linear during the initial
growth of the stress, which is indicative of affine displace-
ment during the initial stage. Around the stress maximum,
the fluidity at the moving wall becomes sufficiently large
that the shear rate in the bulk decreases, leading to an elastic
recoil after which the velocity profile flattens out. These
results are in excellent agreement with the experimental
observations on Carbopol microgels, in which the forma-
tion of a thin lubrication layer at the wall leads to a fast
recoil followed by a total wall slip regime (lower inset in
Fig. 4) [7].
Our theoretical approach provides the following ration-

ale for the observed phenomenology. When shear is
switched on, the fluidity at the wall and the thickness lb
of the shear band are small. At short times, and thus for

(a)

(b)

FIG. 2. Analysis of the stress overshoots predicted by the
fluidity model for an HB exponent n ¼ 1=2. (a) Stress maximum
ΣM vs shear rate _Γ. Inset: strain at maximum ΓM normalized by
the strain Γ1 that corresponds to Σ ¼ 1 and plotted against _Γ.
Colored symbols refer to different values of τ ¼ 0.1 (square), 1
(circle), 10 (triangle), and 100 (inverted triangle). (b) Rescaled
stress maximum ðΣM − 1Þτ0.4 vs _Γτ0.7. Inset: ΓM=τ vs ΣM . The
red line is ΓM=τ ¼ 1.3ΣM .
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small lb, the second term on the rhs of Eq. (2) does not play
any significant role and the stress grows in time almost
linearly. Around the stress maximum, the system enters a
different dynamical regime where dΣ=dt̃ ≃ 0; i.e., the

instantaneous value of the stress is balanced by the effective
shear rate within the shear band _ΓL=lb [39]. The clear-cut
separation between these two different dynamical behav-
iors allows us to provide a distinctive theoretical prediction
for the scaling of the stress maximum as a function of the
shear rate. Finally, note that the narrow fluidized band near
the wall eventually grows into a transient shear band, whose
dynamics and lifespan have been extensively discussed
in Ref. [34].
To conclude, the present fluidity model encompassing

nonlocal effects provides a comprehensive framework for
describing the stress overshoot that goes along with the
startup of shear in simple YSFs. Our approach shows that
the relevant observables are ΣM − 1 and ΓM − 1 instead of
the raw values of the stress maximum coordinates. In that
framework, our model yields a quantitative prediction for
the rate dependence of the overshoot in the form of two
power-law scalings in the limits of low and high shear rates,
which may apply to a vast amount of data from the
literature—see companion paper [39] for additional com-
parisons with previous experimental and numerical results
[19,21,28,43]. Nonlocal effects play a key role in the
predicted scalings by governing the growth of the shear
band nucleated in the vicinity of the moving wall: depend-
ing on the strain rate, fluidization is driven either by
diffusive dynamics or by front propagation. This scenario
provides an alternative to existing descriptions of the stress
overshoot in terms of local rearrangements and cage
dynamics [9,26,28] and to continuum viscoelastic models
based on recoverable strain measurements or mean-field

(a)

(b)

FIG. 3. Analysis of the stress overshoots recorded in experi-
ments on Carbopol microgels with different concentrations C ¼
0.5% (inverted triangle), 1% (triangle), 2% (circle), and 3% wt
(square). (a) Stress maximum σM as a function the applied shear
rate _γ. Inset: corresponding strain γM vs _γ. Data from Ref. [7]. The
experimental uncertainty on these raw data is smaller than the
symbol size. (b) Rescaled stress maximum ðσM=σy − 1Þτμ vs
_γ=_γ⋆, where τ ¼ σy=G0, with G0 the elastic modulus of the
microgel. The red solid line is a power law with exponent ᾱ ¼
h4n=ð9 − nÞi ¼ 0.27� 0.01 inferred from the fluidity model in
the asymptotic regime and averaged over the various samples.
The red dotted line shows the scaling predicted in the diffusive
regime with exponent β̄ ¼ h2n=3i ¼ 0.38� 0.01. Lower inset:
G0γM vs σM. The red line is G0γM ¼ 1.3σM þ 20. See Supple-
mental Material Table S1 [40] for the values of σy, n, andG0 used
in the rescaling. Error bars account for the experimental un-
certainty on σy and G0. Upper inset: rescaling factor _γ⋆ used for
the shear rate as a function of C and normalized by _γ0τ

−λ with
_γ0 ¼ ðσy=AÞ1=n so as to provide a quantity that is predicted by the
theory to be proportional to the cooperativity length ξ. The red
dotted line shows that this quantity scales roughly as 1=C. The
exponents λ and μ are inferred from the HB exponent n, which
depends weakly on the Carbopol concentration [42].

FIG. 4. Rescaled stress response Σ=ΣM vs t̃=t̃M from the
fluidity model (blue solid line, _Γ ¼ 0.029 and τ ¼ 1) and
σ=σM vs t=tM from experiments on a Carbopol microgel (brown
dash-dotted line, _γ ¼ 0.1 s−1, C ¼ 1% wt, adapted from Fig. 4 in
Ref. [7]). t̃M (tM) corresponds to the strain (time resp.) at which
the maximum stress ΣM (σM) is reached. Insets: velocity profiles
v normalized by the velocity of the moving plate v0 as a function
of the distance y to the moving plate normalized by the gap size L
and taken at the various times indicated by the symbols in the
main graph. Lines on the experimental profiles are guides for
the eye.

PHYSICAL REVIEW LETTERS 127, 148003 (2021)

148003-4



elastoplastic models [6,44–46]. As also emphasized in the
companion paper [39], SGMs forming permanent shear
bands can be captured within a generalized version of our
fluidity model. We show that such a generalization does not
affect the scaling properties of the overshoot and that
further including long-range correlations into the model
and playing with boundary conditions can account for
avalanchelike effects as well as brittlelike vs ductilelike
response past the overshoot. In that respect, our results
should set a basis for predicting shear startup flow in a wide
variety of SGMs.
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[41] S. Manneville, L. Bécu, and A. Colin, Eur. Phys. J. A 28,
361 (2004).

[42] The general derivation shows that λ ¼ ð3þ nÞ=ð6 − 2nÞ
and μ ¼ 2n=ð3 − nÞ, where n is the HB exponent. In the
case n ¼ 1=2, one has λ ¼ 0.7 and μ ¼ 0.4 as used for
rescaling the strain and stress in Fig. 2(b). See companion
paper for details [39].

[43] R. R. Fernandes, D. E. V. Andrade, A. T. Franco, and
C. O. R. Negrão, J. Rheol. 61, 893 (2017).

[44] G. J. Donley, P. K. Singh, A. Shetty, and S. A. Rogers, Proc.
Natl. Acad. Sci. U.S.A. 117, 21945 (2020).

[45] P. K. Singh, J. C.-W. Lee, and K. A. Patankar, and S. A.
Rogers, J. Rheol. 65, 129 (2021).

[46] K. Kamani, G. J. Donley, and S. A. Rogers, Phys. Rev. Lett.
126, 218002 (2021).

PHYSICAL REVIEW LETTERS 127, 148003 (2021)

148003-5

https://doi.org/10.1088/0965-0393/19/8/083001
https://doi.org/10.1088/0965-0393/19/8/083001
https://doi.org/10.1103/PhysRevLett.108.255701
https://doi.org/10.1103/PhysRevLett.108.255701
https://doi.org/10.1039/C4SM00578C
https://doi.org/10.1039/C4SM00578C
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1007/s00397-018-1096-6
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1039/c1sm05740e
https://doi.org/10.1039/c1sm05740e
https://doi.org/10.1122/1.1895799
https://doi.org/10.1103/PhysRevLett.108.098303
https://doi.org/10.1088/0953-8984/20/40/404210
https://doi.org/10.1088/0953-8984/20/40/404210
https://doi.org/10.1103/PhysRevLett.118.018002
https://doi.org/10.1063/1.474155
https://doi.org/10.1063/1.474155
https://doi.org/10.1039/c3sm52090k
https://doi.org/10.1039/C2SM26585K
https://doi.org/10.1039/C2SM26585K
https://doi.org/10.1016/0377-0257(90)85005-J
https://doi.org/10.1016/0377-0257(90)85005-J
https://doi.org/10.1122/1.550528
https://doi.org/10.1122/1.550528
https://doi.org/10.1103/PhysRevLett.104.208301
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1122/1.4764000
https://doi.org/10.1103/PhysRevE.67.061403
https://doi.org/10.1103/PhysRevE.67.061403
https://doi.org/10.1122/1.3045803
https://doi.org/10.1039/c0sm00957a
https://doi.org/10.1039/c0sm00957a
https://doi.org/10.1103/PhysRevLett.84.1471
https://doi.org/10.1103/PhysRevLett.84.1471
https://doi.org/10.1122/1.4882021
https://doi.org/10.1122/1.4882021
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1103/PhysRevB.90.140203
https://doi.org/10.1122/8.0000165
https://doi.org/10.1122/8.0000165
https://doi.org/10.1103/PhysRevE.68.011507
https://doi.org/10.1103/PhysRevE.68.011507
https://doi.org/10.1063/1.1636451
https://doi.org/10.1063/1.1636451
https://doi.org/10.1103/PhysRevLett.95.225504
https://doi.org/10.1103/PhysRevLett.95.225504
https://doi.org/10.1122/1.4959967
https://doi.org/10.1122/1.4959967
https://doi.org/10.1039/C8SM00109J
https://doi.org/10.1039/C8SM00109J
https://doi.org/10.1103/PhysRevLett.103.036001
https://doi.org/10.1103/PhysRevLett.103.036001
https://doi.org/10.1039/C5SM01862E
https://doi.org/10.1103/PhysRevLett.123.248001
https://doi.org/10.1103/PhysRevLett.123.248001
https://doi.org/10.1038/nature07026
https://doi.org/10.1039/c001930e
https://doi.org/10.1039/c001930e
https://doi.org/10.1140/epje/i2013-13030-3
https://doi.org/10.1140/epje/i2013-13030-3
https://doi.org/10.1140/epje/i2017-11490-y
https://doi.org/10.1103/PhysRevE.104.034612
https://doi.org/10.1103/PhysRevE.104.034612
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.148003
https://doi.org/10.1051/epjap:2004165
https://doi.org/10.1051/epjap:2004165
https://doi.org/10.1122/1.4991803
https://doi.org/10.1073/pnas.2003869117
https://doi.org/10.1073/pnas.2003869117
https://doi.org/10.1122/8.0000154
https://doi.org/10.1103/PhysRevLett.126.218002
https://doi.org/10.1103/PhysRevLett.126.218002

