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We report on finite-size exact-diagonalization calculations in a Hilbert space defined by the continuum-
model flat moiré bands of magic angle twisted bilayer graphene. For moiré band filling 3 > jνj > 2, where
superconductivity is strongest, we obtain evidence that the ground state is a spin ferromagnet. Near jνj ¼ 3,
we find Chern insulator ground states that have spontaneous spin, valley, and sublattice polarization, and
demonstrate that the anisotropy energy in this order-parameter space is strongly band-filling-factor
dependent. We emphasize that inclusion of the remote band self-energy is necessary for a reliable
description of magic angle twisted bilayer graphene flat band correlations.
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Introduction.—Near a magic twist angle, the width of
bilayer graphene’s low energy moiré bands shrinks [1,2] by
an order of magnitude or more, allowing interactions to
play a prominent role in shaping electronic properties. The
flat bands form an octet that is the direct product of twofold
spin, valley, and band or sublattice degrees of freedom and
closely analogous to the spin, valley, or layer octet of
Bernal bilayer graphene [3–6]. The recent discovery of
superconductivity and interaction-induced Chern and triv-
ial insulator states [7–25] in magic-angle twisted bilayer
graphene (MATBG) has motivated ongoing theoretical
work [26–82], from which it is already clear that, although
MATBG states share properties with doped and undoped
Mott insulators in conventional crystals, they also have a
relationship to integer and fractional quantum Hall states
[45,61,62].
Progress in understanding competitions between differ-

ent low energy states and the sensitivity of the ground state
properties to particular model parameters has been achieved
using numerical mean-field theory [11,24,31,43,44,46,48,
51,69], and beyond, using exact diagonalization [39,75,79],
quantum Monte Carlo [32,34,80] and density matrix re-
normalization group methods [50,51,79,81,82], and using
both Hubbard-like lattice [14,15,25–27,31–35,37–39,41,
52,61,62,78,80] and continuum models [11,24,43,44,
46,48,51,69–75,79,81,82]. In this Letter we use exact
diagonalization to describe correlations within flat bands
that are identified by solving the single-particle problem [2]
exactly. The use of numerical flat bands in place of
approximate Wannier orbitals has the advantage that we
account accurately for crucial changes in the charge
distribution of flat band wave functions as a function of
moiré Brillouin-zone momentum. We use a systematic

approach that accounts fully for self-energies from remote
bands, which play a key role, to make further progress.
Because the MATBG octet enlarges finite Hilbert space
sizes far beyond those of spinful single-band models, we
are forced to restrict our attention primarily to flat band
filling factors with jνj ≥ 2; fortunately much of the strong
correlation physics seen experimentally occurs in this
filling factor regime.
Our calculations confirm [19–21,24] that spin, valley,

and sublattice polarization is common in both insulating
and metallic states, demonstrate that the anisotropy energy
associated with these generalized ferromagnetic orders is
strongly filling factor dependent, and provide evidence for
spin-polarized ground states for jνj ∈ ð2; 3Þ—the range of
filling factor that supports the strongest superconductivity.
This picture is revealed in exact diagonalization (ED) finite-
size system results by signatures of macroscopic quantum
tunneling. Our main results are presented in Fig. 1 where
panel (a) provides evidence that ground states are max-
imally spin-polarizated for jνj ∈ ð2; 3Þ, but valley-polarized
only near jνj ¼ 3. Figure 1(b) shows that the ground state at
jνj ¼ 3 is a spin and valley polarized doublet formed by
states with opposite senses of spontaneous sublattice
polarization. These states are known to be Chern insulators
and are accurately approximated by Hartree-Fock theory.
The ground state of the system with one charge added to (or
removed from) the jνj ¼ 3 ground state [Fig. 1(c)] is still
fully spin polarized but completely loses its K, K0 valley
polarization. As shown in Fig. 1(d) these states nevertheless
have precisely integer occupation numbers for all momenta,
but only when summed over valleys. We conclude that the
states with added and removed charge have easy-plane
valley order; we attribute the sudden change in anisotropy
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to the strong band and sublattice dependence of the single-
particle Hamiltonian at momenta near the γ point in the
moiré Brillouin zone. The sublattice polarization-properties
[Fig. 1(e)] of the ground states near jνj ¼ 3, discussed
further below, are revealed by the responses to sublattice
and valley dependent potentials illustrated in Figs. 1(b) and
1(c).
Flat band projected exact diagonalization.—Because of

large Dirac velocities, the electronic density of states of an
isolated neutral graphene sheet has a minimum at neutrality

and is small over a broad energy range, allowing interaction
effects to be described perturbatively. When magic-angle
moiré bands [2] are formed, strong electronic correlations
emerge and perturbative analyses are less reliable. The ED
of the Hamiltonian is a powerful nonperturbative method to
study strong correlations, but, because the many-body
Hilbert space grows exponentially with system size, it is
practical only when the single-particle Hamiltonian can be
truncated to a reasonably small dimension, typically with at
most several tens of single-particle states. In MATBG the
spectral isolation of the eight flat bands of interest (flat
conduction and valence bands for each of four spin or
valley flavors) motivates projection to an occupation
number subspace in which all remote valence bands in
graphene’s negative-energy sea are fully occupied, all
remote conduction bands are empty, and occupation
numbers are allowed to fluctuate only within the flat bands.
This strategy leads to a low-energy effective Hamiltonian
that acts entirely in the flat-band Hilbert space:

Heff ¼
X

i0;i

½ϵiδi0;i þ Σi0;i�c†i0ci

þ 1

2

X

i0;i;j0;j

hi0; j0jVji; jic†i0c†j0cjci; ð1Þ

where hi0; j0jVji; ji is a two-body Coulomb interaction
matrix element, i0; i; j0; j label flat band states, ϵi is an
eigenvalue of the single-particle twisted-bilayer graphene
Hamiltonian [2] including the interlayer tunneling contri-
bution that is responsible for flat band formation, and

Σi0;i ¼
X

v

½hi0; vjVji; vi − hi0; vjVjv; ii�

−
X

v̄

½hi0; v̄jVji; v̄i − hi0; v̄jVjv̄; ii�; ð2Þ

which we refer to the remote band self energy, accounts for
Hartree and exchange interactions with states v in the
frozen negative energy sea. In Eq. (2) the sum over v̄ in the
regularization term is over the frozen valence bands of a
neutral bilayer with no-interlayer tunneling [43]. As we
shall emphasize, the remote band self-energy plays an
essential role in MATBG physics and unlike in the related
case of Landau level physics, cannot be neglected. Its
importance derives from the fact that flat valence band
wave functions have strongly momentum-dependent spatial
distributions across the moiré unit cell, even when averaged
over the full band [36,42]. This issue is solved by
appropriately renormalizing the flat bands by adding
self-energies from the remote valence bands. Both
Hartree and Fock terms are essential when considering
the physics away from the neutrality point (fully filled flat
valence band) in effective Hamiltonians projected to flat
band subspace. This self-energy accounts for leading-order
interactions between flat and remote bands, and includes

'

FIG. 1. Spin, valley, and sublattice order vs electron number Nel
in finite-size MATBG with M ¼ 9 moiré unit cells:
(a) ΔE1 ¼ EminðSmaxÞ − EminðS < SmaxÞ (meV=unit cell), where
S ¼ SK þ SK0 is total spin and Smax ¼ Nel=2 is its maximal value.
ΔE2 ¼ EminðPv ¼ 0Þ − EminðPv ¼ 1Þ where Pv ¼ jNK − NK0 j=
ðNK þ NK0 Þ. (b) Response of the ground state energy of the valley
polarized state at jνj ¼ 3 to an external field that couples to
sublattice polarization. (c) Response of low energy states to a
valley-odd sublattice field at Nel ¼ 10. The right panels in (b) and
(c) schematically illustrate the sublattice polarizations induced in
states (1) and (2) by the corresponding fields. (d) Ground state
momentum space occupation numbers projected to valley K
(left), and traced over valley (right) at Nel ¼ 10. (e) Schematic
illustration of macroscopic quantum tunneling of the sublattice
pseudospin collective coordinate, based on Nel ¼ 10 ED results.
The ground state (1)(left) has the same sense of sublattice
polarization in the two valleys, and at this system size, strong
hybridization between the sublattice polarization states labeled
AA and BB, where the first letter corresponds to valley K and the
second to valley K0. The first excited state (2) (right) has opposite
sense of sublattice polarization in opposite valleys (AB) and (BA),
and much weaker hybridization between the two degenerate states
at this system size.
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exchange interactions that enhance intersubband layer
coupling as emphasized in a recent perturbative renorm-
alization group calculation by Kang and Vafek [76]. At
higher order, remote band polarization will screen the
Coulomb interaction in Eq. (1), among other less under-
stood effects. We partially account for these screening
effect [77] by allowing the (in general q dependent)
dielectric function used in constructing the Coulomb matrix
elements to be larger than the value that would be expected
on the basis of dielectric and gate screening alone.
The remote band self-energy reshapes the bands princi-

pally by shifting energies near γ upward, relative to those
near κ, κ0. The relative shifts occur primarily because the
Hartree potential from the remote bands is attractive near
the AA positions where states near γ have less weight
[36,42,43]. The sharp contrast between the conduction and
valence band widths in these empty-band dispersions does
not imply strong particle-hole asymmetry. Indeed the
model we will study is very nearly particle-hole symmetric,
and the relative widths of the bands is reversed when we
describe flat band states in terms of interacting holes
instead of interacting electrons [83]. Instead, the upward
shift at γ works in concert with weaker electron-electron
repulsion matrix elements for states near γ [83] that reduce
their Coulomb energy penalty as the flat bands are filled.
The ED results in this work were calculated at twist angle
θ ¼ 1.1, interaction strength parameter ϵ−1 ¼ 0.05, for the
M ¼ 9 moiré unit cells system, which is sufficiently large
to capture the important distinction between states near γ
and those in the rest of the Brillouin zone. Unlike the model
we study, experimental samples do exhibit clear particle-
hole asymmetry. For example, the Chern insulator states we
discuss below tend to be more prominent at positive than at
negative filling factors. The asymmetry is thought [44] to
be due to nonlocal corrections to the interlayer tunneling
model we employ. The relationship of our findings to
experiment is addressed more fully in the discussion
section below.
The many-body Hamiltonian separates into decoupled

blocks labeled by the number of electrons in each valleyNK
and NK0 , valley-dependent total (SK and SK0) and azimuthal
spin (SzK and SzK0 ) quantum numbers, and total crystal
momentum ðKx; KyÞ. The separate spin quantum numbers
for the two valleys apply because the model is invariant
under independent valley-dependent spin rotations.
Numerical results.—Our first important result is related

to the regime in which jνj ∈ ð2; 3Þ, where the ground state
is commonly observed to have two occupied flavors. (Our
ED calculations have little access to the jνj < 2 region of
filling factor, which fortunately are of lesser interest
because they tend to have relatively well understood
Fermi liquid ground state with no broken symmetries
[14,15,44].) A key issue is whether these states are fully
spin polarized, or fully valley polarized, or in some other
more complicated two-flavor state. Our ED calculations do

not have access to the full Hilbert space across the entire
jνj ∈ ð2; 3Þ interval, which corresponds to the Nel ∈
½10; 18� in our flat-band projected ED calculation. For
Nel ¼ 10, 11, 12 full Hilbert space calculations confirm
that the ground state is maximally spin-polarized, as
illustrated in Fig. 2. For larger Nel we can show that the
fully spin-polarized state is lower in energy than the
corresponding fully valley-polarized state. Some of these
conclusions rest on extrapolations from calculations per-
formed in a selected subspace of the full ED Hilbert space,
as explained in the Supplemental Material [83]. The
conclusion that the ground state is fully spin polarized
helps constrain and simplify potential theories of
superconductivity.
For Nel ¼ 9 (jνj ¼ 3), we are able to fully explore nearly

all subspaces, including all with particles distributed over
three flavors, and subspaces with particles distributed over
four flavors provided one of the flavors is filled by at least
five particles. We find that the ground state is fully spin and
valley polarized, and well approximated by a single Slater
determinant. For example, we find that the maximum
deviation from unit momentum-state occupation across
the Brillouin zone is 0.04. The ground state appears as a
quartet with nearly degenerate doublets for each sense of
valley polarization. By studying the response of this
doublet to a sublattice dependent potential m0σz, where
σz acts on the sublattice degree-of-freedom in both layers,
we see that for a given valley polarization the doublet is
formed by states with opposite sublattice polarizations and
that there is observable hybridization between these states.
It is known from Hartree-Fock theory that these states are
Chern insulators with Chern number magnitudes jCj ¼ 1
and signs determined by the sign of the product of the
valley and sublattice polarization. In Refs. [47,48] the two
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FIG. 2. Ground state spin and valley quantum numbers as a
function of electron number Nel. Top: total spin SK and SK0 in
each valley. Bottom: valley polarization Pv. Integer band filling
ν ¼ −3 occurs at Nel ¼ 9 highlighted by a dashed line. S ¼
SK þ SK0 is total spin.
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states with the same Chern number are described by a σ
model in which only the orientation of the corresponding
pseudospin is retained as a relevant degree of freedom. The
Chern insulator at jνj ¼ 3 [45,46,64,65] can be viewed as a
simple ferromagnet formed from these pseudospins. From
Fig. 1(b) we conclude that hσzi ∼ 2.25, implying that
Psub ¼ hσzi=Nel ∼ 0.25, in agreements with previous
Hartree-Fock results [43,46], and that the Hamiltonian
matrix element for collective tunneling between states with
opposite senses of spontaneous sublattice polarization
(which is expected to fall exponentially with system size)
is ∼0.058 meV for Nel ¼ M ¼ 9 and (based on a separate
calculation) ∼0.0094 meV for Nel ¼ M ¼ 16 calculation.
Easy-plane valley anisotropy.—In Figs. 1(c) and 2 we

see that valley polarization is completely lost when we add
or remove one electron from the Nel ¼ 9 valley and spin
polarized ferromagnet. We attribute this behavior to the
strong band splitting at γ, which has an outsized influence
on valley anisotropy by suppressing the band-mixing
degree of freedom. An important element of our interpre-
tation is the observation that our system has only U(1) and
not SU(2) valley symmetry. In the language of magnetism
our system has uniaxial valley anisotropy, which allows
easy axis or easy-plane valley magnetism. Our conclusion
that the state at γ plays a crucial role is supported by the
property that the excitation spectra at N ¼ 8, where the γ
state is empty, and at N ¼ 10, where the γ state is doubly
occupied, are nearly identical. Our calculations confirm
that easy axis sublattice order is present for both easy-axis
and easy-plane valley anisotropy, with four degenerate
classical states distinguished by the sublattice polarization
of K and K0 valley components in the easy plane case. The
ground state responds most strongly to sublattice potentials
that are identical in the two valleys, demonstrating AA or
BB sublattice polarizations (see [83]). These two classical
states should have identical energies, and we conclude from
the ED spectra that the tunneling between them is large at
this system size. We associate the excited state doublets in
Fig. 1(c) with AB and BA sublattice polarizaiton for valleys
KK0. This interpretation is supported by strong response to
valley-odd sublattice potentials. Our ED results demon-
strate that the many-particle tunneling matrix element
between these sublattice states is greatly reduced compared
to tunneling between degenerate AA and BB states. In this
case the ED spectra exhibit resonant tunneling not only
between ground states, but also between excited states of
the isolated AB and BA sectors.
Discussion.—Our calculations show that MATBG

ground state energies are generally speaking well approxi-
mated by unrestricted Hartree-Fock approximations that
allow spin, valley, and sublattice symmetries to be broken.
In the top panel of Fig. 3 we show the dependence of the
correlation energy on electron number in the subspace with
full spin and valley flavor polarization over the full range of
available filling factor for that flavor between νf ¼ −1 and

νf ¼ 1. The correlation energy, defined as the difference
between the ED ground state energy and the minimum
energy single-Slater determinant, vanishes when the orbital
doublet is empty (νf ¼ −1) and full (νf ¼ 1), and also
when it reaches an extremely small value in the insulating
state at νf ¼ 0. These results suggest insulating states at all
integer filling factors with a band filling per flavor equal to
−1, 0, or 1 are accurately rendered by Hartree-Fock
calculations, even when symmetry is broken by choosing
different band filling factors for different flavors. For a
given total integer filling factor a variety of different states,
characterized by different flavor-dependent filling factors
and senses of sublattice polarization, are expected to
compete closely in energy. The states have different total
Chern numbers with jCj ¼ 1 for jνj ¼ 3, 0, or 2 for jνj ¼ 2,
1, or 3 for jνj ¼ 1, and 0, 2, or 4 for ν ¼ 0. (The jνj ¼ 1 and
jνj ¼ 0 cases are outside of the reach of ED.) In Fig. 3 we
see that the correlation energy is larger away from integer
filling factors. We expect that this trend will be stronger in
sectors with less flavor polarization, and that Hartree-Fock
calculation therefore overestimates the tendency to break
flavor symmetries. Insulating states at jνj ¼ 1will therefore
compete with metallic states with no broken flavor
symmetries that have much larger correlation energies.

FIG. 3. The correlation energy per moiré period as a function of
filling factor (top) and as a function of the twist angle for Nel ¼ 9
together with corresponding sublattice polarizations (bottom).
Within this range of angles, both exact diagonalization and
Hartree-Fock calculations predict full flavor polarization. Top:
the green triangles correspond to one flavor full-spin-polarization
calculations and EPol

corr ¼ EPol
tot − EPol

HF, where EPol
tot is the ground

state energy from exact diagonalization calculations and EPol
HF is

the mean-field energy from self-consistent Hartree-Fock calcu-
lations. The black squares show to the energy difference between
the ground state energy and the lowest energy state in the full
flavor polarization sector. The black dashed line marks the filling
factor ν ¼ −3. Bottom: the twist angle dependence at Nel ¼ 9
with green triangles for the correlation energy and black squares
and red circles for ED and HF sublattice polarizations.
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The difference in energy between the true ground state and
the ground state in the fully polarized sector increases
quickly for Nel > 9, showing that the energy cost of valley
polarization quickly increases.
The appearance of insulating states at integer filling

factors depends on screening environment, twist angle, and
band structure details that we have not fully explored here.
For example in the bottom panel of Fig. 3 we illustrate how
the correlation energy of the ν ¼ −3 Chern insulator state
depends on twist angle. As expected the correlation energy
is reduced as the twist angle increases relative to the magic
angle. Surprisingly though, the sublattice polarization
increases and is more accurately estimated by Hartree-
Fock calculations as twist angle increases [43]. Evidently
the physics responsible for the broken symmetries is
basically that of exchange interactions, which are captured
by Hartree-Fock calculations, with correlations working
against order. While finite size effects are present in all ED
calculations, a direct comparison with Hartree-Fock results
for the same system size (Fig. 3) and results extrapolated to
the thermodynamic limit shown in the Supplemental
Material [83] confirm this conclusion. Like the twist angle
θ, the screening parameter ϵ used in our calculations
influences quantitative conclusions. Interactions in the flat
bands of MATBG are screened by the surrounding hex-
agonal boron nitride dielectric, by the nearby electrical
gates, and by transitions between the flat and remote bands
[77]. Strictly speaking, the latter two effects yield wave-
vector-dependent contributions to the dielectric constant
with gates dominating in importance at small wave vectors
and screening within the bilayer dominating a larger wave
vectors.
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